
Appendix A
Linear algebra basics

A.1 Linear spaces

Linear spaces consist of elements called vectors. Vectors are abstract mathematical
objects, but, as the name suggests, they can be visualized as geometric vectors. Like
regular numbers, vectors can be added together and subtracted from each other to
form new vectors; they can also be multiplied by numbers. However, vectors cannot
be multiplied or divided by one another as numbers can.

One important peculiarity of the linear algebra used in quantum mechanics is
the so-called Dirac notation for vectors. To denote vectors, instead of writing, for
example, ~a, we write |a〉. We shall see later how convenient this notation turns out
to be.

Definition A.1. A linear (vector) space V over a field1 F is a set in which the
following operations are defined:

1. Addition: for any two vectors |a〉 , |b〉 ∈ V, there exists a unique vector in V
called their sum, denoted by |a〉+ |b〉.

2. Multiplication by a number (“scalar”): For any vector |a〉 ∈ V and any number
λ ∈ F, there exists a unique vector in V called their product, denoted by λ |a〉 ≡
|a〉λ .

These operations obey the following axioms.

1. Commutativity of addition: |a〉+ |b〉= |b〉+ |a〉.
2. Associativity of addition: (|a〉+ |b〉)+ |c〉= |a〉+(|b〉+ |c〉).
3. Existence of zero: there exists an element of V called |zero〉 such that, for any
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1 Field is a term from algebra which means a complete set of numbers. The sets of rational numbers
Q, real numbers R, and complex numbers C are examples of fields. Quantum mechanics usually
deals with vector spaces over the field of complex numbers.
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As an alternative notation for |zero〉, we some times use “0” but not “|0〉”.2

vector |a〉, |a〉+ |zero〉 | 〉= a .2
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4. Existence of the opposite element: For any vector |a〉 there exists another vector,
denoted by −|a〉, such that |a〉+(−|a〉) = |zero〉.

5. Distributivity of vector sums: λ (|a〉+ |b〉) = λ |a〉+λ |b〉.
6. Distributivity of scalar sums: (λ +µ) |a〉= λ |a〉+µ |a〉.
7. Associativity of scalar multiplication: λ (µ |a〉) = (λ µ) |a〉.
8. Scalar multiplication identity: For any vector |a〉 and number 1∈ F, 1 · |a〉= |a〉.

Definition A.2. Subtraction of vectors in a linear space is defined as follows:

|a〉− |b〉 ≡ |a〉+(−|b〉).

Exercise A.1. Which of the following are linear spaces (over the field of complex
numbers, unless otherwise indicated)?

a) R over R? R over C? C over R? C over C?
b) Polynomial functions? Polynomial functions of degree ≤ n? > n?
c) All functions such that f (1) = 0? f (1) = 1?
d) All periodic functions of period T ?
e) N-dimensional geometric vectors over R?

Exercise A.2. Prove the following:

a) there is only one zero in a linear space;
b) if |a〉+ |x〉= |a〉 for some |a〉 ∈ V, then |x〉= |zero〉;
c) for any vector |a〉 and for number 0 ∈ F, 0 |a〉= |zero〉;
d) −|a〉= (−1) |a〉;
e) −|zero〉= |zero〉;
f) for any |a〉, −|a〉 is unique;
g) −(−|a〉) = |a〉;
h) |a〉= |b〉 if and only if |a〉− |b〉= 0.

Hint: Most of these propositions can be proved by adding the same number to the
two sides of an equality.

A.2 Basis and dimension

Definition A.3. A set of vectors |vi〉 is said to be linearly independent if no nontri-
vial2 linear combination λ1 |v1〉+ . . .+λN |vN〉 equals |zero〉.
Exercise A.3. Show that a set of vectors {|vi〉} is not linearly independent if and
only if one of the |vi〉 can be represented as a linear combination of others.

Exercise A.4. For linear spaces of geometric vectors, show the following:

a) For the space of vectors in a plane (denoted R ), any two vectors are linearly in-
dependent if and only if they are not parallel. Any set of three vectors is linearly
dependent.

That is, in which at least one of the coefficients is nonzero.3
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b) For the space of vectors in a three-dimensional space (denoted R ), any three
non-coplanar vectors form a linearly independent set.

Hint: Recall that a geometric vector can be defined by its x, y and z components.

Definition A.4. A subset {|vi〉} of a vector space V is said to span V (or to be a
spanning set for V) if any vector in V can be expressed as a linear combination of
the |vi〉.

Exercise A.5. For the linear space of geometric vectors in a plane, show that any
set of at least two vectors, of which at least two are non-parallel, forms a spanning
set.

Definition A.5. A basis of V is any linearly independent spanning set. A decompo-
sition of a vector relative to a basis is its expression as a linear combination of the
basis elements.

The basis is a smallest subset of a linear space such that all other vectors can
be expressed as a linear combination of the basis elements. The term “basis” may
suggest that each linear space has only one basis — just as a building can have only
one foundation. Actually, as we shall see, in any nontrivial linear space, there are
infinitely many bases.

Definition A.6. The number of elements in a basis is called the dimension of V.
Notation: dimV.

Exercise A.6.∗ Prove that in a finite-dimensional space, all bases have the same
number of elements.

Exercise A.7. Using the result of Ex. A.6, show that, in a finite-dimensional space,

a) any linearly independent set of N = dimV vectors forms a basis;
b) any spanning set of N = dimV vectors forms a basis.

Exercise A.8. Show that, for any element of V, there exists only one decomposition
into basis vectors.

Definition A.7. For a decomposition of the vector |a〉 into basis {|vi〉}, viz.,

|a〉= ∑
i

ai |vi〉 , (A.1)

we may use the notation

|a〉 '

 a1
...

aN

 . (A.2)

This is called the matrix form of a vector, in contrast to the Dirac form (A.1). The
scalars ai are called the coefficients or amplitudes of the decomposition3.

We use the symbol ' instead of = when expressing vectors and operators in matrix form, e.g.,
in Eq. (A.2). This is to emphasize the difference: the left-hand side, a vector, is an abstract object
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Exercise A.9. Let |a〉 be one of the elements, |vk〉, of the basis {|vi〉}. Find the
matrix form of the decomposition of |a〉 into this basis.

Exercise A.10. Consider the linear space of two-dimensional geometric vectors.
Such vectors are usually defined by two numbers (x,y), which correspond to their x
and y components, respectively. Does this notation correspond to a decomposition
into any basis? If so, which one?

Exercise A.11. Show the following:

a) For the linear space of geometric vectors in a plane, any two non-parallel vectors
form a basis.

b) For the linear space of geometric vectors in a three-dimensional space, any three
non-coplanar vectors form a basis.

Exercise A.12. Consider the linear space of two-dimensional geometric vec-
tors. The vectors ~a,~b,~c, ~d are oriented with respect to the x axis at angles
0, 45◦, 90◦, 180◦ and have lengths 2, 1, 3, 1, respectively. Do the pairs {~a,~c}, {~b, ~d},
{~a, ~d} form bases? Find the decompositions of the vector~b in each of these bases.
Express them in the matrix form.

Definition A.8. A subset of a linear space V that is a linear space on its own is
called a subspace of V.

Exercise A.13. In an arbitrary basis {|vi〉} in the linear space V, a subset of elements
is taken. Show that a set of vectors that are spanned by this subset is a subspace of
V.

For example, in the space of three-dimensional geometric vectors, any set of
vectors within a particular plane or any set of vectors collinear to a given straight
line form a subspace.

A.3 Inner Product

Although vectors cannot be multiplied together in the same way that numbers can,
one can define a multiplication operation that maps any pair of vectors onto a num-
ber. This operation generalizes the scalar product that is familiar from geometry.

Definition A.9. For any two vectors |a〉, |b〉 ∈ V we define an inner (scalar) pro-
duct — a number 〈a| b〉 ∈ C such that:

1. For any three vectors |a〉 , |b〉 , |c〉 , 〈a|(|b〉+ |c〉) = 〈a| b〉+ 〈a| c〉.
2. For any two vectors |a〉 , |b〉 and number λ , 〈a|(λ |b〉) = λ 〈a| b〉.

and is basis-independent, while the right-hand side is a set of numbers and depends on the choice
of basis {|vi〉}. However, in the literature, the equality sign is generally used for simplicity.

The inner product of two vectors is sometimes called the overlap in the context of quantum
physics.
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3. For any two vectors |a〉 , |b〉 , 〈a| b〉= 〈b| a〉∗.
4. For any |a〉 , 〈a| a〉 is a nonnegative real number, and 〈a| a〉 = 0 if and only if
|a〉= 0.

Exercise A.14. In geometry, the scalar product of two vectors ~a = (xa,ya) and~b =

(xb,yb) (where all components are real) is defined as ~a ·~b = xaxb + yayb. Show that
this definition has all the properties listed above.

Exercise A.15. Suppose a vector |x〉 is written as a linear combination of some
vectors |ai〉: |x〉= ∑i λi |ai〉. For any other vector |b〉, show that 〈b| x〉= ∑i λi 〈b| ai〉
and 〈x| b〉= ∑i λ ∗i 〈ai| b〉.

Exercise A.16. For any vector |a〉, show that 〈zero| a〉= 〈a| zero〉= 0.

Definition A.10. |a〉 and |b〉 are said to be orthogonal if 〈a| b〉= 0.

Exercise A.17. Prove that a set of nonzero mutually orthogonal vectors is linearly
independent.

Definition A.11. ‖|a〉‖=
√
〈a| a〉 is called the norm (length) of a vector. Vectors of

norm 1 are said to be normalized. For a given vector |a〉, the quantity N = 1/‖|a〉‖
(such that the vector N |a〉 is normalized) is called the normalization factor.

Exercise A.18. Show that multiplying a vector by a phase factor eiφ , where φ is a
real number, does not change its norm.

Definition A.12. A linear space in which an inner product is defined is called a
Hilbert space.

A.4 Orthonormal Basis

Definition A.13. An orthonormal basis {|vi〉} is a basis whose elements are mutu-
ally orthogonal and have norm 1, i.e.,〈

vi
∣∣ v j
〉
= δi j, (A.3)

where δi j is the Kronecker symbol.

Exercise A.19. Show that any orthonormal set of N (where N = dimV) vectors
forms a basis.

Exercise A.20. Show that, if

 a1
...

aN

 and

 b1
...

bN

 are the decompositions of vectors

|a〉 and |b〉 in an orthonormal basis, their inner product can be written in the form

〈a| b〉= a∗1b1 + . . .+a∗NbN . (A.4)
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Equation (A.4) can be expressed in matrix form using the “row-times-column”
rule:

〈a| b〉=
(

a∗1 . . . a∗N
) b1

...
bN

 . (A.5)

One context where we can use the above equations for calculating the inner pro-
duct is ordinary spatial geometry. As we found in Ex. A.10, the coordinates of geo-
metric vectors correspond to their decomposition into orthogonal basis {î, ĵ}, so not
surprisingly, their scalar products are given by Eq. (A.4).

Suppose we calculate the inner product of the same pair of vectors using
Eq. (A.5) in two different bases. Then the right-hand side of that equation will
contain different numbers, so it may seem that the inner product will also depend
on the basis chosen. This is not the case, however: according to Defn. A.9, the inner
product is defined for a pair of vectors, and is basis-independent.

Exercise A.21. Show that the amplitudes of the decomposition

 a1
...

aN

 of a vector

|a〉 into an orthonormal basis can be found as follows:

ai = 〈vi| a〉 . (A.6)

In other words [see Eq. (A.1)],

|a〉= ∑
i
〈vi| a〉 |vi〉 . (A.7)

Exercise A.22. Consider two vectors in a two-dimensional Hilbert space, |ψ〉 =
4 |v1〉+5 |v2〉 and |φ〉=−2 |v1〉+3i |v2〉, where {|v1〉 , |v2〉} is an orthonormal basis.

a) Show that the set {|w1〉= (|v1〉+ i |v2〉)/
√

2, |w2〉= (|v1〉− i |v2〉)/
√

2} is also
an orthonormal basis.

b) Find the matrices of vectors |ψ〉 and |φ〉 in both bases.
c) Calculate the inner product of these vectors in both bases using Eq. (A.5). Show

that they are the same.

Exercise A.23. Show that, if |a〉 is a normalized vector and {ai = 〈vi| a〉} is its
decomposition in an orthonormal basis {|vi〉}, then

∑
i
|ai|2 = 1. (A.8)

Exercise A.24. Suppose {|wi〉} is some basis in V. It can be used to find an ort-
honormal basis {|vi〉} by applying the following equation in sequence to each basis
element:

|vk+1〉= N

[
|wk+1〉−

k

∑
i=1
〈vi| wk+1〉 |vi〉

]
, (A.9)
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where N is the normalization factor. This is called the Gram-Schmidt procedure.

Exercise A.25.∗ For a normalized vector |ψ〉 in an N-dimensional Hilbert space, and
any natural number m ≤ N, show that it is possible to find a basis {|vi〉} such that
|ψ〉= 1/

√
m∑

m
i=1 |vi〉.

Exercise A.26.∗ Prove the Cauchy-Schwarz inequality for any two vectors |a〉 and
|b〉:

| 〈a| b〉 | ≤ ‖|a〉‖×‖|b〉‖. (A.10)

Show that the inequality is saturated (i.e., becomes an equality) if and only if the
vectors |a〉 and |b〉 are collinear (i.e., |a〉= λ |b〉).
Hint: Use the fact that ‖|a〉−λ |b〉‖2 ≥ 0 for any complex number λ .

Exercise A.27. Prove the triangle inequality for any two vectors |a〉 and |b〉:

‖(|a〉+ |b〉)‖ ≤ ‖|a〉‖+‖|b〉‖. (A.11)

A.5 Adjoint Space

The scalar product 〈a| b〉 can be calculated as a matrix product (A.5) of a row and

a column. While the column

 b1
...

bN

 corresponds directly to the vector |b〉, the row

(
a∗1 . . . a∗N

)
is obtained from the column corresponding to vector |a〉 by transposi-

tion and complex conjugation. Let us introduce a convention associating this row
with the vector 〈a|, which we call the adjoint of |a〉.

Definition A.14. For the Hilbert space V, we define the adjoint space V† (read
“V-dagger”), which is in one-to-one correspondence with V, in the following way:
for each vector |a〉 ∈ V, there is one and only one adjoint vector 〈a| ∈ V† with the
property

Adjoint(λ |a〉+µ |b〉) = λ
∗ 〈a|+µ

∗ 〈b| . (A.12)

Exercise A.28. Show that V† is a linear space.

Exercise A.29. Show that if {|vi〉} is a basis in V, {〈vi|} is a basis in V†, and if
the vector |a〉 is decomposed into {|vi〉} as |a〉 = ∑ai |vi〉, the decomposition of its
adjoint is

〈a|= ∑a∗i 〈vi| . (A.13)

Exercise A.30. Find the matrix form of the vector adjoint to |v1〉+ i |v2〉 in the basis
{〈v1| ,〈v2|}.

“Direct” and adjoint vectors are sometimes called ket and bra vectors, respecti-
vely. The rationale behind this terminology, introduced by P. Dirac together with
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the symbols 〈| and |〉, is that the bra-ket combination of the form 〈a| b〉, a “bracket”,
gives the inner product of the two vectors.

Note that V and V† are different linear spaces. We cannot add a bra-vector and a
ket-vector.

A.6 Linear Operators

A.6.1 Operations with linear operators

Definition A.15. A linear operator Â on a linear space V is a map of linear space
V onto itself such that, for any vectors |a〉, |b〉 and any scalar λ

Â(|a〉+ |b〉) = Â |a〉+ Â |b〉 ; (A.14a)

Â(λ |a〉) = λ Â |a〉 . (A.14b)

Exercise A.31. Decide whether the following maps are linear operators :

a) Â |a〉 ≡ 0.
b) Â |a〉= |a〉.

c) C2→ C2 : Â
(

x
y

)
=

(
x
−y

)
.

d) C2→ C2 : Â
(

x
y

)
=

(
x+ y

xy

)
.

e) C2→ C2 : Â
(

x
y

)
=

(
x+1
y+1

)
.

f) Rotation by angle φ in the linear space of two-dimensional geometric vectors
(over R).

Definition A.16. For any two operators Â and B̂, their sum Â+ B̂ is an operator that
maps vectors according to

(Â+ B̂) |a〉 ≡ Â |a〉+ B̂ |a〉 . (A.15)

For any operator Â and any scalar λ , their product λ Â is an operator that maps
vectors according to

(λ Â) |a〉 ≡ λ (Â |a〉). (A.16)

Exercise A.32. Show that the set of all linear operators over a Hilbert space of
dimension N is itself a linear space, with the addition and multiplication by a scalar
given by Eqs. (A.15) and (A.16), respectively.

A map is a function that establishes, for every element keta in V, a unique “image” Â |a〉.

C2 is the linear space of columns
(

x
y

)
consisting of two complex numbers.

6
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a) Show that the operators Â+ B̂ and λ Â are linear in the sense of Defn. A.15.
b) In the space of liner operators, what is the zero element and the opposite element
−Â for a given Â?

c)§ Show that the space of linear operators complies with all the axioms introduced
in Definition A.1.

Definition A.17. The operator 1̂ that maps every vector in V onto itself is called the
identity operator.

When writing products of a scalar with identity operators, we sometimes omit
the symbol 1̂, provided that the context allows no ambiguity. For example, instead
of writing Â−λ 1̂, we may simply write Â−λ .

Definition A.18. For operators Â and B̂, their product ÂB̂ is an operator that maps
every vector |a〉 onto ÂB̂ |a〉 ≡ Â(B̂ |a〉). That is, in order to find the action of the
operator ÂB̂ on a vector, we must first apply B̂ to that vector, and then apply Â to the
result.

Exercise A.33. Show that a product of two linear operators is a linear operator.

It does matter in which order the two operators are multiplied, i.e., generally
ÂB̂ 6= B̂Â. Operators for which ÂB̂ = B̂Â are said to commute. Commutation rela-
tions between operators play an important role in quantum mechanics, and will be
discussed in detail in Sec. A.9.

Exercise A.34. Show that the operators of counterclockwise rotation by angle π/2
and reflection about the horizontal axis in the linear space of two-dimensional geo-
metric vectors do not commute.

Exercise A.35. Show that multiplication of operators has the property of associati-
vity, i.e., for any three operators, one has

Â(B̂Ĉ) = (ÂB̂)Ĉ. (A.17)

A.6.2 Matrices

It may appear that, in order to fully describe a linear operator, we must say what it
does to every vector. However, this is not the case. In fact, it is enough to say how
the operator maps the elements of some basis {|v1〉 , . . . , |vN〉} in V, i.e., it is enough
to know the set {Â |v1〉 , . . . , Â |vN〉}. Then, for any other vector |a〉, which can be
decomposed as

|a〉= a1 |v1〉+ . . .+aN |vN〉 ,

we have, thanks to linearity,

Â |a〉= a1Â |v1〉+ . . .+aN Â |vN〉 . (A.18)



264 A. I. Lvovsky. Quantum Physics

How many numerical parameters does one need to completely characterize a
linear operator? Each image Â

∣∣v j
〉

of a basis element can be decomposed into the
same basis:

Â
∣∣v j
〉
= ∑

i
Ai j |vi〉 . (A.19)

For every j, the set of N parameters A1 j, . . . ,AN j fully describes Â
∣∣v j
〉
. Accordingly,

the set of N2 parameters Ai j, with both i and j varying from 1 to N, contains full
information about a linear operator.

Definition A.19. The matrix of an operator in the basis {|vi〉} is an N×N square
table whose elements are given by Eq. (A.21). The first index of Ai j is the number
of the row, the second is the number of the column.

Suppose, for example, that you are required to prove that two given operators are
equal: Â = B̂. You can do so by showing the identity for the matrices Ai j and Bi j
of the operators in any basis. Because the matrix contains full information about an
operator, this is sufficient. Of course, you should choose your basis judiciously, so
that the matrices Ai j and Bi j are as easy as possible to calculate.

Exercise A.36. Find the matrix of 1̂. Show that this matrix does not depend on the
choice of basis.

Exercise A.37. Find the matrix representation of the vector Â
∣∣v j
〉

in the basis
{|vi〉}, where

∣∣v j
〉

is an element of this basis, j is given, and the matrix of Â is
known.

Exercise A.38. Show that, if |a〉 '

 a1
...

aN

 in some basis, then the vector Â |a〉 is

given by the matrix product

Â |a〉 '

 A11 . . . A1N
...

...
AN1 . . . ANN


 a1

...
aN

=

 ∑ j A1 ja j
...

∑ j AN ja j

 . (A.20)

Exercise A.39. Given the matrices Ai j and Bi j of the operators Â and B̂, find the
matrices of the operators

a) Â+ B̂;
b) λ Â;
c) ÂB̂.

The last two exercises show that operations with operators and vectors are rea-
dily represented in terms of matrices and columns. However, there is an important
caveat: matrices of vectors and operators depend on the basis chosen, in contrast to
“physical” operators and vectors that are defined irrespectively of any specific basis.

This point should be taken into account when deciding whether to perform a
calculation in the Dirac or matrix notation. If you choose the matrix notation to save
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ink, you should be careful to keep track of the basis you are working with, and write
all the matrices in that same basis.

Exercise A.40. Show that the matrix elements of the operator Â in an orthonormal
basis {|vi〉} are given by

Ai j = 〈vi|
(
Â
∣∣v j
〉)
≡ 〈vi| Â

∣∣v j
〉
. (A.21)

Exercise A.41. Find the matrices of operators R̂φ and R̂θ that correspond to the ro-
tation of the two-dimensional geometric space through angles φ and θ , respectively
[Ex. A.31(f)]. Find the matrix of R̂φ R̂θ using the result of Ex. A.39 and check that
it is equivalent to a rotation through (φ +θ).

Exercise A.42. Give an example of a basis and determine the dimension of the
linear space of linear operators over a Hilbert space of dimension N (see Ex. A.32).

A.6.3 Outer products

Definition A.20. Outer products |a〉〈b| are understood as operators acting as fol-
lows:

(|a〉〈b|) |c〉 ≡ |a〉(〈b| c〉) = (〈b| c〉) |a〉 . (A.22)

(The second equality comes from the fact that 〈b| c〉 is a number and commutes with
everything.)

Exercise A.43. Show that |a〉〈b| as defined above is a linear operator.

Exercise A.44. Show that (〈a| b〉)(〈c| d〉) = 〈a|(|b〉〈c|) |d〉.

Exercise A.45. Show that the matrix of the operator |a〉〈b| is given by

|a〉〈b| '

 a1
...

aN

(b∗1 . . . b∗N
)
=

 a1b∗1 . . . a1b∗N
...

...
aNb∗1 . . . aNb∗N

 . (A.23)

This result explains the intuition behind the notion of the outer product. As dis-
cussed in the previous section, a ket-vector corresponds to a column and a bra-vector
to a row. According to the rules of matrix multiplication, the product of the two is
a square matrix, and the outer product is simply the operator corresponding to this
matrix.

Exercise A.46. Let Ai j be the matrix of the operator Â in an orthonormal basis
{|vi〉}. Show that

Â = ∑
i, j

Ai j |vi〉
〈
v j
∣∣ . (A.24)
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Exercise A.47. Let Â be an operator and {|vi〉} an orthonormal basis in the Hilbert
space. It is known that Â |v1〉 = |w1〉 , . . . , Â |vN〉 = |wN〉, where |w1〉 , . . . , |wN〉 are
some vectors (not necessarily orthonormal). Show that

Â = ∑
i
|wi〉〈vi| . (A.25)

These exercises reveal the significance of outer products. First, they provide a
way to convert the operator matrix into the Dirac notation as per Eq. (A.24). This

operator from the Dirac form into the matrix notation. Second, Eq. (A.25) allows us
to construct the expression for an operator based on our knowledge of how it maps
elements of an arbitrary orthonormal basis. We find it to be of great practical utility
when we try to associate an operator with a physical process.

Below are two practice exercises using these results, followed by one very im-
portant additional application of the outer product.

Exercise A.48. The matrix of the operator Â in the basis {|v1〉 , |v2〉} is
(

1 −3i
3i 4

)
.

Express this operator in the Dirac notation.

Exercise A.49. Let {|v1〉 , |v2〉} be an orthonormal basis in a two-dimensional Hil-
bert space. Suppose the operator Â maps |u1〉 = (|v1〉+ |v2〉)/

√
2 onto |w1〉 =√

2 |v1〉 and |u2〉 = (|v1〉− |v2〉)/
√

2 onto |w2〉 =
√

2(|v1〉+ 3i |v2〉). Find the ma-
trix of Â in the basis {|v1〉 , |v2〉}.
Hint: Notice that {|u1〉 , |u2〉} is an orthonormal basis.

Exercise A.50. Show that for any orthonormal basis {|vi〉},

∑
i
|vi〉〈vi|= 1̂. (A.26)

This result is known as the resolution of the identity. It is useful for the following
application. Suppose the matrix of Â is known in some orthonormal basis {|vi〉} and
we wish to find its matrix in another orthonormal basis, {|wi〉}. This can be done as
follows:

(Âi j)w-basis =
〈
wi
∣∣ Â
∣∣ w j

〉
=
〈

wi

∣∣∣ 1̂Â1̂
∣∣∣ w j

〉
= 〈wi|

(
∑
k
|vk〉〈vk|

)
Â
(

∑
m
|vm〉〈vm|

)∣∣w j
〉

= ∑
k

∑
m
〈wi| vk〉

〈
vk
∣∣ Â
∣∣ vm

〉〈
vm
∣∣ w j

〉
. (A.27)

The central object in the last line is the matrix element of Â in the “old” basis {|vi〉}.
Because we know the inner products between each pair of elements in the old and

result complements Eq. (A.21), which serves the reverse purpose, converting the
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new bases, we can use the above expression to find each matrix element of Â in the
new basis. We shall use this trick throughout the course.

The calculation can be simplified if we interpret the last line of Eq. (A.27) as a
product of three matrices. An example to that effect is given in the solution to the
exercise below.

Exercise A.51. Find the matrix of the operator Â from Ex. A.48 in the basis
{|w1〉 , |w2〉} such that

|w1〉= (|v1〉+ i |v2〉)/
√

2, (A.28)

|w2〉= (|v1〉− i |v2〉)/
√

2.

a) using the Dirac notation, starting with the result of Ex. A.48 and then expressing
each bra and ket in the new basis;

b) according to Eq. (A.27).

Check that the results are the same.

A.7 Adjoint and self-adjoint operators

The action of an operator Â on a ket-vector |c〉 corresponds to multiplying the square
matrix of Â by the column associated with |c〉. The result of this operation is another
column, Â |c〉.

Let us by analogy consider an operation in which a row corresponding to a bra-
vector 〈b| is multiplied on the right by the square matrix of Â. The result of this
operation will be another row corresponding to a bra-vector. We can associate such
multiplication with the action of the operator Â on 〈b| from the right, denoted in the
Dirac notation as 〈b| Â. The formal definition of this operation is as follows:

〈b| Â≡∑
i j

b∗i Ai j
〈
v j
∣∣ , (A.29)

where Ai j and bi are, respectively, the matrix elements of Â and |b〉 in the orthonor-
mal basis {|vi〉}.

Exercise A.52. Derive the following properties of the operation defined by
Eq. (A.29):

a) Â acting from the right is a linear operator in the adjoint space;
b) 〈a| b〉〈c|= 〈a|(|b〉〈c|);
c) for vectors |a〉 and |c〉, (

〈a| Â
)
|c〉= 〈a|

(
Â |c〉

)
; (A.30)

d) the vector 〈a| Â as defined by Eq. (A.29) does not depend on the basis in which
the matrix (Ai j) is calculated.
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Let us now consider the following problem. Suppose we have an operator Â that
maps a ket-vector |a〉 onto ket-vector |b〉: Â |a〉= |b〉. What is the operator Â† which,
when acting from the right, maps bra-vector 〈a| onto bra-vector 〈b|: 〈a| Â† = 〈b|? It
turns out that this operator is not the same as Â, but is related relatively simply to it.

Definition A.21. An operator Â† (“A-dagger”) is called the adjoint (Hermitian con-
jugate) of Â if for any vector |a〉,

〈a| Â† = Adjoint
(
Â |a〉

)
. (A.31)

If Â = Â†, the operator is said to be Hermitian or self-adjoint.

Unlike bra- and ket-vectors, operators and their adjoints live in the same Hilbert
space. More precisely, they live in both the bra- and ket- spaces: they act on bra-
vectors from the right, and on ket-vectors from the left. Note that an operator cannot
act on a bra-vector from the left or on a ket-vector from the right.

Exercise A.53. Show that the matrix of Â† is related to the matrix of Â through
transposition and complex conjugation.

Exercise A.54. Show that, for any operator, (Â†)† = Â.

Exercise A.55. Show that the Pauli operators (1.7) are Hermitian.

Exercise A.56. By way of counterexample, show that two operators being Hermi-
tian does not guarantee that their product is also Hermitian.

Exercise A.57. Show that
(|c〉〈b|)† = |b〉〈c| . (A.32)

It may appear from this exercise that the adjoint of an operator is somehow re-
lated to its inverse: if the “direct” operator maps |b〉 onto |c〉, its adjoint does the
opposite. This is not always the case: as we know from the Definition A.20 of the
outer product, the operator |c〉〈b|, when acting from the left, maps everything (not
only |c〉) onto |b〉, while |c〉〈b| maps everything onto |c〉. However, there is an im-
portant class of operators, the so-called unitary operators, for which the inverse is
the same as the adjoint. We discuss these operators in detail in Sec. A.10.

Exercise A.58. Show that

a)
(Â+ B̂)† = Â† + B̂†; (A.33)

b)
(λ Â)† = λ

∗Â†; (A.34)

c)
(ÂB̂)† = B̂†Â†. (A.35)

We can say that every object in linear algebra has an adjoint. For a number, its
adjoint is its complex conjugate; for a ket-vector it is a bra-vector (and vice versa);
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for an operator it is the adjoint operator. The matrices of an object and its adjoint
are related by transposition and complex conjugation.

Suppose we are given a complex expression consisting of vectors and operators,
and are required to find its adjoint. Summarizing Eqs. (A.12), (A.32) and (A.35), we
arrive at the following algorithm:

a) invert the order of all products;
b) conjugate all numbers;
c) replace all kets by bras and vice versa;
d) replace all operators by their adjoints.

Here is an example.

Adjoint
(
λ ÂB̂ |a〉〈b|Ĉ

)
= λ

∗Ĉ† |b〉〈a| B̂†Â† (A.36)

This rule can be used to obtain the following relation.

Exercise A.59. Show that

〈φ | Â |ψ〉= 〈ψ| Â† |φ〉∗ . (A.37)

A.8 Spectral decomposition

We will now prove an important theorem for Hermitian operators. I will be assuming
you are familiar with the notions of determinant, eigenvalue, and eigenvector of a
matrix and the methods for finding them. If this is not the case, please refer to any
introductory linear algebra text.

Exercise A.60.∗ Prove the spectral theorem: for any Hermitian operator V̂ , there
exists an orthonormal basis {|vi〉} (which we shall call the eigenbasis) such that

V̂ = ∑
i

vi |vi〉〈vi| , (A.38)

with all the vi being real.

The representation of an operator in the form (A.38) is called the spectral decom-
position or diagonalization of the operator. The basis {|vi〉} is called an eigenbasis
of the operator.

Exercise A.61. Write the matrix of the operator (A.38) in its eigenbasis.

Exercise A.62. Show that the elements of the eigenbasis of V̂ are the eigenvectors
of V̂ and the corresponding values vi are its eigenvalues, i.e., for any i,

V̂ |vi〉= vi |vi〉 .
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Exercise A.63.∗§ Show that a spectral decomposition (not necessarily with real ei-
genvalues) exists for any operator V̂ such that V̂V̂ † = V̂ †V̂ (such operators are said
to be normal).

Exercise A.64. Find the eigenvalues and eigenbasis of the operator associated with
the rotation of the plane of two-dimensional geometric vectors through angle φ (see
Ex. A.41), but over the field of complex numbers.

Exercise A.65.§ In a three-dimensional Hilbert space, three operators have the fol-
lowing matrices in an orthonormal basis {|v1〉 , |v2〉 , |v3〉}:

a) L̂x '

 0 1 0
1 0 1
0 1 0

 ,

b) L̂y '

 0 −i 0
i 0 −i
0 i 0

 ;

c) L̂z '

1 0 0
0 0 0
0 0 −1

.

Show that these operators are Hermitian. Find their eigenvalues and eigenvectors.

So we have found that every Hermitian operator has a spectral decomposition.
But is the spectral decomposition of a given operator unique? The answer is af-
firmative as long as the operator has no degenerate eigenvalues, i.e., eigenvalues
associated with two or more eigenvectors.

Exercise A.66. The Hermitian operator V̂ diagonalizes in an orthonormal basis
{|vi〉}. Suppose there exists a vector |ψ〉 that is an eigenvector of V̂ with eigenva-
lue v, but is not proportional to any |vi〉. Show that this is possible only if v is a
degenerate eigenvalue of V̂ and |ψ〉 is a linear combination of elements of {|vi〉}
corresponding to that eigenvalue.

Exercise A.67. Show that, for a Hermitian operator V̂ whose eigenvalues are non-
degenerate,

a) the eigenbasis is unique up to phase factors;

The latter result is of primary importance, and we shall make abundant use of
it throughout this course. It generalizes to Hilbert spaces of infinite dimension and
even to those associated with continuous observables. Let us now look into the case
of operators with degenerate eigenvalues.

Exercise A.68. Find the eigenvalues of the identity operator in the qubit Hilbert
space and show that they are degenerate. Give two different examples of this opera-
tor’s eigenbasis.

b) any set that contains all linearly independent normalized eigenvectors of V̂ is
identical to the eigenbasis of V̂ up to phase factors.
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Exercise A.69. Show that eigenvectors of a Hermitian operator V̂ that are associated
with different eigenvalues are orthogonal. Do not assume non-degeneracy of the
eigenvalues.

Exercise A.70. Suppose an eigenvalue v of an operator V̂ is degenerate. Show that
a set of corresponding eigenvectors forms a linear subspace (see Defn. A.8).

Exercise A.71.∗

a) Show that if
〈
ψ
∣∣ Â
∣∣ ψ
〉
=
〈
ψ
∣∣ B̂
∣∣ ψ
〉

for all |ψ〉, then Â = B̂.
b) Show that if

〈
ψ
∣∣ Â
∣∣ ψ
〉

is a real number for all |ψ〉, then Â is Hermitian.

Definition A.22. A Hermitian operator Â is said to be positive (non-negative) if〈
ψ
∣∣ Â
∣∣ ψ
〉
> 0 (

〈
ψ
∣∣ Â
∣∣ ψ
〉
≥ 0) for any non-zero vector |ψ〉.

Exercise A.72. Show that a Hermitian operator Â is positive (non-negative) if and
only if all its eigenvalues are positive (non-negative).

Exercise A.73. Show that a sum Â+ B̂ of two positive (non-negative) operators is
positive (non-negative).

A.9 Commutators

As already discussed, not all operators commute. The degree of non-commutativity
turns out to play an important role in quantum mechanics and is quantified by the
operator known as the commutator.

Definition A.23. For any two operators Â and B̂, their commutator and anticommu-
tator are defined respectively by

[Â, B̂] = ÂB̂− B̂Â; (A.39a)
{Â, B̂} = ÂB̂+ B̂Â. (A.39b)

Exercise A.74. Show that:

a)

ÂB̂ =
1
2
([Â, B̂]+{Â, B̂}); (A.40)

b)
[Â, B̂] =−[B̂, Â]; (A.41)

c)
[Â, B̂]† = [B̂†, Â†]; (A.42)

d)
[Â, B̂+Ĉ] = [Â, B̂]+ [Â,Ĉ]; (A.43a)

[Â+ B̂,Ĉ] = [Â,Ĉ]+ [B̂,Ĉ]; (A.43b)
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e)
[Â, B̂Ĉ] = [Â, B̂]Ĉ+ B̂[Â,Ĉ]; (A.44a)

[ÂB̂,Ĉ] = [Â,Ĉ]B̂+ Â[B̂,Ĉ]; (A.44b)

f)

[ÂB̂,ĈD̂] = ĈÂ[B̂, D̂]+Ĉ[Â, D̂]B̂+ Â[B̂,Ĉ]D̂+[Â,Ĉ]B̂D̂ (A.45)

= ÂĈ[B̂, D̂]+Ĉ[Â, D̂]B̂+ Â[B̂,Ĉ]D̂+[Â,Ĉ]D̂B̂.

When calculating commutators for complex expressions, it is advisable to use
the relations derived in this exercise rather than the definition (A.39a) of the com-
mutator. There are many examples to this effect throughout this book.

Exercise A.75. Express the commutators

a) [ÂB̂Ĉ, D̂];
b) [Â2 + B̂2, Â+ iB̂]

in terms of the pairwise commutators of the individual operators Â, B̂,Ĉ, D̂.

Exercise A.76. For two operators Â and B̂, suppose that [Â, B̂] = ic1̂, where c is a
complex number. Show that

[Â, B̂n] = ncB̂n−1. (A.46)

Exercise A.77. Show that, if Â and B̂ are Hermitian, so are

a) i[Â, B̂];
b) {Â, B̂}.

Exercise A.78. Find the commutation relations of the Pauli operators (1.7).
Answer:

[σ̂m, σ̂ j] = 2iεm jkσk, (A.47)

where ε is the Levi-Civita symbol given by

εm jk ≡

+1 for m jk = xyz, yzx or zxy
−1 for m jk = xzy, yxz or zyx

0 otherwise.
(A.48)

A.10 Unitary operators

Definition A.24. Linear operators that map all vectors of norm 1 onto vectors of
norm 1 are said to be unitary.

Exercise A.79. Show that unitary operators preserve the norm of any vector, i.e., if
|a′〉= Û |a〉, then 〈a| a〉= 〈a′| a′〉.
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Exercise A.80. Show that an operator Û is unitary if and only if it preserves the
inner product of any two vectors, i.e., if |a′〉= Û |a〉 and |b′〉= Û |b〉, then 〈a| b〉=
〈a′| b′〉.

Exercise A.81. Show that:

a) a unitary operator maps any orthonormal basis {|wi〉} onto an orthonormal ba-
sis;

b) conversely, for any two orthonormal bases {|vi〉},{|wi〉}, the operator Û =

∑i |vi〉〈wi| is unitary (in other words, any operator that maps an orthonormal
basis onto an orthonormal basis is unitary).

Exercise A.82. Show that an operator Û is unitary if and only if Û†Û = ÛÛ† = 1̂
(i.e., its adjoint is equal to its inverse).

Exercise A.83. Show the following:

a) Any unitary operator can be diagonalized and all its eigenvalues have absolute
value 1, i.e., they can be written in the form eiθ , θ ∈ R.
Hint: use Ex. A.63.

b) A diagonalizable operator (i.e., an operator whose matrix becomes diagonal in
some basis) with eigenvalues of absolute value 1 is unitary.

Exercise A.84. Show that the following operators are unitary:

a) the Pauli operators (1.7);
b) rotation through angle φ in the linear space of two-dimensional geometric vec-

tors over R.

operators

unitaryHermitian Pauli ops,

etc.

�,1

Fig. A.1 Relations among types of operators

The families of Hermitian and unitary operators overlap, but they are not identical
(Fig. A.1). An operator that is both Hermitian and unitary must be self-inverse, as
per Ex. A.82. Such operators are relatively rare.
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A.11 Functions of operators

The concept of function of an operator has many applications in linear algebra and
differential equations. It is also handy in quantum mechanics, as operator functions
permit easy calculation of evolution operators.

Definition A.25. Consider a complex function f (x) defined on C. The function of
operator f (Â) of a diagonalizable operator Â is the following operator:

f (Â) = ∑
i

f (ai) |ai〉〈ai| , (A.49)

where {|ai〉} is an orthonormal basis in which Â diagonalizes:

Â = ∑
i

ai |ai〉〈ai| . (A.50)

Exercise A.85. Show that, if the vector |a〉 is an eigenvector of a Hermitian operator
Â with eigenvalue a, then f (Â) |a〉= f (a) |a〉.
Exercise A.86. Suppose that the operator Â is Hermitian and the function f (x),
when applied to a real argument x, takes a real value. Show that f (Â) is a Hermitian
operator, too.

Exercise A.88. Find the matrices of
√

Â and ln Â in the orthonormal basis in which

Â'
(

1 3
3 1

)

Exercise A.89. Find the matrix of eiθ Â, where Â = 1
2

(
1 1
1 1

)
.

Hint: One of the eigenvalues of Â is 0, which means that the corresponding ei-
genvector does not appear in the spectral decomposition (A.50) of Â. However, the
exponential of the corresponding eigenvalue is not zero, and the corresponding ei-
genvectors do show up in the operator function (A.49).

Exercise A.90. Show that, for any operator Â and function f , [Â, f (Â)] = 0.

Exercise A.91. Suppose f (x) has a Taylor decomposition f (x) = f0 + f1x+ f2x2 +
. . .. Show that f (Â) = f01̂+ f1Â+ f2Â2 + . . .

Exercise A.92. Show that, if the operator Â is Hermitian, the operator eiÂ is unitary

and eiÂ =
(

e−iÂ
)−1

.

Exercise A.93.∗ Let ~s = (sx,sy,sz) be a unit vector (i.e. a vector of length 1). Show
that:

Exercise A.87. Suppose that the operator Â is Hermitian and function f (x), when
applied to any real argument x, takes a real non-negative value. Show that f (Â) is a
non-negative operator (see Defn. A.22).
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eiθ~s·~̂σ = cos θ 1̂+ i sin θ~s · ~̂σ , (A.51)

where ~̂σ = (σ̂x, σ̂y, σ̂z),~s · ~̂σ = sxσ̂x + syσ̂y + szσ̂z.
Hint: There is no need find the explicit solutions for the eigenvectors of the operator
~s · ~̂σ .

Exercise A.94.§ Find the matrices of the operators eiθσ̂x , eiθσ̂y , eiθσ̂z in the canonical
basis.
Answer:

eiθσ̂x =

(
cosθ i sinθ

i sinθ cosθ

)
;

eiθσ̂y =

(
cosθ sinθ

−sinθ cosθ

)
;

eiθσ̂z =

(
eiθ 0
0 e−iθ

)
.

Definition A.26. Suppose the vector |ψ(t)〉 depends on a certain parameter t. The
derivative of |ψ(t)〉 with respect to t is defined as the vector

d |ψ〉
dt

= lim
∆ t→0

|ψ(t +∆ t)〉− |ψ(t)〉
∆ t

. (A.52)

Similarly, the derivative of the operator Ŷ (t) with respect to t is the operator

dŶ
dt

= lim
∆ t→0

Ŷ (t +∆ t)− Ŷ (t)
∆ t

. (A.53)

Exercise A.95. Suppose that the matrix form of the vector |ψ(t)〉 is

|ψ(t)〉=

 ψ1(t)
...

ψN(t)


in some basis. Show that

d |ψ〉
dt

=

 dψ1(t)/dt
...

dψN(t)/dt

 .

Write an expression for the matrix form of an operator derivative.

Exercise A.96. Suppose the operator Â is diagonalizable in an orthonormal basis
and independent of t, where t is a real parameter. Show that d

dt eiÂt = iÂeiÂt = ieiÂt Â.
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Exercise A.97.∗ For two operators Â and B̂, suppose that [Â, B̂] = ic1̂, where c is a
complex number. Prove the Baker-Hausdorff-Campbell formula

eÂ+B̂ = eÂeB̂e−ic/2 = eB̂eÂeic/2 (A.54)

using the following steps.

a) Show that
[Â,eB̂] = ceB̂. (A.55)

Hint: use the Taylor series expansion for the exponential and Eq. (A.46).
b) For an arbitrary number λ and operator Ĝ(λ ) = eλ Âeλ B̂, show that

dĜ(λ )

dλ
= Ĝ(λ )(Â+ B̂+λc) (A.56)

c) Solve the differential equation (A.56) to show that

Ĝ(λ ) = eλ Â+λ B̂+λ 2c/2. (A.57)

d) Prove the Baker-Hausdorff-Campbell formula using Eq. (A.57).

This is a simplified form of the Baker-Hausdorff-Campbell formula. The full form of this formula
is more complicated and holds for the case when [Â, B̂] does not commute with Â or B̂.
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