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Coherent fan emissions
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Abstract. A transient grating is induced att = 0 in an optically thin caesium vapour sample
using two simultaneous intense short laser pulses which are resonant with the fundamental 6S1/2–
6P1/2 transition and characterized by the wavevectorsEk1 and Ek2. These pulses are followed by
a third resonant excitation pulse att = τ with wavevectorEk3. Prompt and delayed super-radiant
emissions follow with a spatial pattern governed by higher-order diffraction effects. We study
the polarization and modulation properties of these coherent fan emissions.

1. Introduction

The transient induced grating technique has been widely used for exploration of ultrafast
relaxation phenomena in various media [1–3]. Two simultaneous noncollinear pulses
entering a sample induce coherence in the form of a transient grating. A third pulse
probing the sample is diffracted by the grating and scattered byEk2 − Ek1. The intensity
of the diffracted field measured as a function of the third pulse’s delay yields the coherence
relaxation rate.

This technique can be considered as a special case of the three-pulse stimulated photon
echo method. Here the first excitation pulse produces a coherent superposition between the
ground and excited states which is then transferred by the second excitation pulse into a
coherent superposition separately between the ground states and between the excited states.
In this manner excited and ground state gratings have been formed. The relaxation rate
of either the ground state or excited state coherent superposition is generally much slower
than that of a ground–excited state superposition. Therefore to study grating relaxation
it is necessary that the second excitation pulse immediately follows the first. This is the
motivation for applying the first two pulses simultaneously.

When the temporally overlapping excitation pulses are intense the gratings produced
scatter in many orders and echo experiments become very rich [4, 5]. In [4] standing
wave excitation pulses were generated by deploying temporally overlapping laser pulses
into the sample from opposing directions. A multitude of echoes were produced at times
te = τ(1+n1/2n2), wheren1 andn2 are arbitrary integers, when two such pulses separated
by τ were used.

In this paper we excite a caesium vapour sample with nearly collinear pulses and
examine the temporal characteristics of the many super-radiant emissions which occur in
the various diffraction orders. Att = 0 we apply a simultaneous pulse pair with wavevectors
Ek1 andEk2 followed att = τ by a third withEk3. Prompt emissions appear att = 0 andτ and
a delayed emission appears at 2τ . For the excitation pulses we use, these emissions appear
in a fan-like array and are called coherent fan emissions (CFE). The CFE att = 0 are called
fan free decays (FFD) while those atτ and 2τ are called fan photon echoes (FPE).
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2. Theory

The foregoing theoretical analysis consists of two parts. In the first part, we get some insight
into the physics of CFE by considering their formation on a simple two-level system. In the
second, we develop the technique for exact quantitative analysis of CFE in caesium vapour.

2.1. The origin of the fans

2.1.1. Billiard-ball echo model. Our theoretical analysis uses the billiard-ball model [6–8]
of coherent phenomena in gases since it provides a simple means of presenting an otherwise
complicated experiment. The idea is to represent each atom in the sample by a wavepacket
(whose size is determined by the thermal distribution of atomic momenta) and to follow
its development in time as it is subjected to short (compared with the inverse Doppler
width) optical excitation pulses. Each excitation pulse will generate additional wavepackets
which represent the new states the initial wavepacket has been coupled to by the pulse. All
wavepackets recoil according to the momentum of the photon absorbed or emitted. When
a sequence of excitation pulses is applied, the initial wavepacket divides and redivides
with the result that the several wavepackets that have been produced separate, recombine,
separate again and so on. Associated with overlapping wavepackets is a macroscopic
dipole moment which can generate super-radiant emission. Thus by simply following the
wavepacket (billiard-ball) trajectories and noting when they cross one discovers the temporal
development of these emissions. These trajectories are displayed in a recoil diagram which
also serves as a Feynman diagram [7]. This recoil diagram shows the billiard-ball-centre
displacements as a function of time.

The degree of wavepacket overlap is determined by associating, with each trajectory, a
billiard ball whose density as a function ofEr is given by

ρ(Er − Erj ) =
(√

π

2
RBB

)−3/2

e−(Er−Erj )
2/R2

BB , (1)

whereRBB = h̄/
√
mCskB T is the billiard-ball radius,mCs is the mass of an atom (caesium

in our case),kB is the Boltzmann constant,T is the temperature andErj lies on the trajectory.
When billiard balls of trajectoriesi andj overlap a macroscopic dipole moment is formed
whose amplitude is proportional to the integral

fij =
∫
ρ(Er − Eri)ρ(Er − Erj ) d3Er = e−(Eri−Erj )

2/(2R2
BB). (2)

All that is necessary for sizable super-radiance to occur is that the trajectories come within
RBB of each other (exact crossing is not required).

In an optically thin gas (such as in our experiment), Doppler dephasing determines the
duration of super-radiant emissions. One way of estimating the Doppler dephasing time is
to divide the optical wavelength by the thermal velocity. Another (as in the billiard-ball
method) is to divide the de Broglie wavelength of the atomic wavepacket (RBB) by the
atomic recoil velocity. Both methods give identical results.

An example is shown in figure 1 which displays a complete recoil diagram for a
conventional stimulated photon echo experiment in which excitation pulses are applied
at t = 0, τ1 andτ2. Whenever a laser pulse hits the sample, each trajectory in the diagram
splits into two branches that correspond to the excited and ground state billiard balls. The
intersection of any two trajectories indicates that the associated billiard balls have come
into overlap so that there may be a burst of coherent radiation from the sample.
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Figure 1. A recoil diagram for a conventional stimulated photon echo experiment with excitation
pulses applied att = 0, τ1, andτ2. The simulated echo appears att = τ1 + τ2 and the normal
two-pulse echo att = 2τ1. In addition to these conventional echoes this diagram shows that
echoes are to be expected att = 2τ2−2τ1, 2τ2− τ1, and 2τ2. If τ1 6 T ∗2 there is also a prompt
coherent scattering att = τ2 from the grating produced by the initial pulse pair. This scattering
can be associated with extrapolated crossings att = τ2 − τ1.

2.1.2. Stimulated echo pulse sequence.Referring to figure 1, we first assume that the
separationτ1 between the first two pulses is much smaller than the delayτ2 of the third
pulse and bothτ1 andτ2 are substantially greater than the inhomogeneous dephasing timeT ∗2 :

T ∗2 � τ1� τ2. (3)

In other words, we assume that the two billiard balls created by the first pulse have enough
time to drift apart before the sample is hit by the second one.

In this case, there is a photon echo associated with each crossing (the noncollinearity
of the excitation pulses is so slight that it can be neglected) of the figure 1 recoil diagram
trajectories. The wavevector associated with each echo is equal to the difference between the
wavevectors of the crossing trajectories. The crossing att = 2τ1, for example, corresponds
to the two-pulse echo phased to radiate at 2Ek2−Ek1, two crossings at the momentt = τ1+τ2

are associated with the stimulated photon echoes, and a series of crossings neart = 2τ2

result in two-pulse echoes caused by one of the first two and the third excitation pulses.
The situation changes if inequality (3) is modified in the following manner:

τ1 . T ∗2 � τ2, (4)

so that the two billiard balls created by the first excitation pulse still overlap when the second
pulse arrives. In figure 1 the trajectories associated with wavevectors 0 andEk1 − Ek2 + Ek3

technically do not cross. However, at the momentt = τ2 the two billiard balls represented
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by these trajectories still do overlap resulting in the prompt scattering of the third pulse along
Ek3+ (Ek1− Ek2). This signal can be associated with the extrapolated crossing att = τ2− τ1.

2.1.3. Induced grating limit. The situation becomes even more interesting whenτ1 = 0,
i.e. the first two pulses overlap. The sample is now simultaneously exposed to photons
with wavevectorsEk1 and Ek2. An atom absorbingn of the former and emittingm of the
latter will recoil with momentum ¯h(nEk1 − mEk2). The case where the former are emitted
and the latter are absorbed is obtained by makingn andm negative. For|n − m| = 0 the
atom remains in the ground state, for|n − m| = 1 it is excited. The various trajectories
corresponding to different values ofn andm form a fan (see figure 2). Here we have
labelled the recoiling trajectories with thek vectors (n + 1)Ek1 − nEk2 and the ground
state trajectories with thek vectorsnEk1 − nEk2, n being an integer associated with each
trajectory. Since the trajectories are four dimensional we display them by showing their
three projections in figures 2(b)–(d). Note that in these figures we have exaggerated
the differences in the wavevectors so that the diagrams are easier to read. Actually, the
difference is so small that if the trajectories had been drawn to scale they would not appear
to fan out.

2.1.4. Free decay. Billiard balls associated with the various trajectories overlap att = 0
and then separate as the trajectories diverge. The overlap of billiard balls associated with
adjacent ground and excited state trajectories leads to a fan of coherent emissions along
(n1 + 1)Ek1 − n1Ek2 − n2(Ek1 − Ek2) = (1n+ 1)Ek1 −1nEk2 where1n = n1 − n2 is a positive
or negative integer. These FFDs are the optical analogues of the free induction decays of
nuclear magnetic resonance.

The difficulty with the experimental observation of a free decay (FD) is that it is easily
masked by the excitation pulse which induces it. Typically, the intensity of the excitation
pulse is at least an order of magnitude greater than that of the FD. For an excitation pulse
short enough to cover the optical resonance lineshape, the FD will last forT ∗2 , but T ∗2
is usually too short to enable one to disentangle the FD from the excitation pulse and
consequently masking occurs.

The first FD observation [9] succeeded by only exciting a small fraction of the resonance
lineshape so that the FD persisted long afterT ∗2 . More recently the FD associated with a
second harmonic signal was made possible without recourse to a partial excitation of the
resonance lineshape by exploiting the difference in the frequencies of the excitation pulse
and FD signals [10].

The transient induced grating technique, which we have discussed here, offers another
way of observing a FD. Since the FFDs are simply an array of FDs, directed alongEk1, Ek2,
2Ek2− Ek1, 3Ek2− 2Ek1 etc, all except those directed alongEk1 and Ek2 can be spatially separated
from the intense excitation pulses.

2.1.5. Stimulated echo fan.After applying an excitation pulse att = 0 with two
noncollinear components alongEk1 and Ek2 a third pulse is applied att = τ along Ek3.
As shown in figure 2, each of the original fans then branches to produce new fans along
(n+1)Ek1−nEk2−Ek3 andn(Ek1−Ek2)+Ek3 according to whether the photon stimulates emission
or is absorbed. Prompt coherent emissions are again produced by the overlap of billiard balls
associated with adjacent trajectories, keeping in mind that the angular spread of any fan is
so small that it does not lead to any additional reduction in billiard-ball overlap. The upper
branch leads to emissions along(n1+1)Ek1−n1Ek2−((n2+1)Ek1−n2Ek2−Ek3) = Ek3+1n(Ek1−Ek2)



Coherent fan emissions 4001

Figure 2. Three projections of a four-dimensional recoil diagram associated with excitation
pulses applied alongEk1, Ek2 and Ek3 at timest = 0, 0 andτ . Each trajectory is labelled with an
integern and thek vector of each trajectory is given as a function ofn. The angular separation
of the wavevectors is greatly exaggerated to enable the different trajectories to be distinguished.
(a) The orientation of thek vectors is displayed. (b) The z, x recoil displacement is given as a
function of t . (c) The z, y recoil displacement is given as a function oft . (d) The y, x recoil
displacement is given as a function oft .

as does the lower branch sincen2(Ek1 − Ek2)+ Ek3 − n1(Ek1 − Ek2) = Ek3 +1n(Ek1 − Ek2). These
are prompt scatterings of the third pulse off the grating produced by the first complex pulse
and are related to the stimulated echo in the manner described previously.

2.1.6. Two-pulse photon echo fan.In the neighbourhood oft = 2τ the fan trajectories
created by the pulse att = τ effectively cross to produce an echo emission array along
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Figure 3. A correctly scaled recoil diagram
specialized to the Cs vapour 6S1/2–6P1/2

transition at 320 K forτ = 2 ns. The ‘fan’ of
propagators associated with the transient induced
grating is unresolved. The four circles at the
trajectory crossing points represent the billiard
balls, also drawn to scale.RBB denotes the
billiard-ball radius.

n1(Ek1 − Ek2) + Ek3 − ((n2 + 1)Ek1 − n2Ek2 − Ek3) = 2Ek3 + (1n − 1)Ek1 − 1nEk2. These are the
analogues of the normal two-pulse photon echo.

2.1.7. Fan divergence exaggeration.As previously noted, figure 2 greatly exaggerates
the separation between recoil trajectories corresponding to different fan components within
the same quantum state. In our experiment, the angle betweenEk1 and Ek2 is about 0.003
rad which is equal to the angular separation between the recoil trajectories. Drawn to this
scale the fans in figure 2 would coalesce to a single trajectory. It suffices then to draw a
two-dimensional recoil diagram which we do in figure 3, specializing toτ = 2 ns. The
ordinate representing the recoil displacement corresponds to the direction of the laser pulses.
In this figure, which has been drawn to scale, we show the outline of the billiard ball (1)
representing atoms in a Cs atomic vapour at 45◦C.

It follows that in calculating coherent emission intensity the displacement of billiard
balls associated with angling betweenEk1, Ek2 and Ek3 can be neglected, so that the recoil
velocity is Evrecoil ≈ h̄Ek/mCs for the excited state billiard balls and zero for the ground state
ones. The billiard balls associated with different trajectories of the same branch can be
considered completely overlapping.

2.2. The calculation of fans

2.2.1. Fundamental transition in caesium.We work on the 6S1/2–6P1/2 transition in
caesium vapour. As shown by the photon echo experiments [11] on the same transition,
this system is very well understood and therefore a well-suited medium for conceptual
experiments involving physics of coherent phenomena. Both ground and excited levels of
the transition contain two magnetic substates with quantum numbermJ equal to1

2 and− 1
2;

in addition, each level is split into two sublevels due to hyperfine interaction.
Since the nuclear spin of Cs isI = 7

2, the quantum numbersF of the hyperfine sublevels
are 3 and 4 for both 6S and 6P states. The magnitude of hyperfine splitting is 9.193 GHz
for 6S and 1.168 GHz for 6P [12] and for both levels, theF = 4 sublevel lies above the
F = 3. Our excitation pulses are very short in comparison with the periods of the above
frequencies. One can therefore neglect the hyperfine interaction while the excitation pulse is
applied and assume that all hyperfine levels are equally excited. On the other hand, since the
splitting frequencies substantially exceed the inverse delay between excitation pulses, the
quantum numbermJ is not conserved after an excitation pulse and super-radiant emissions
exhibit dramatic modulation effects [11].
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2.2.2. Optical excitation by two simultaneous pulses.Consider a caesium sample being
resonantly excited att = 0 by two laser pulses with equal electric field amplitudeE(12)

and slightly noncollinear wavevectorsEk1 and Ek2. We choose our reference frame so that
the z-axis coincides with the pulses’ propagation direction (neglecting their small angular
separation) and thex-axis is along the electric field polarization of the third excitation pulse,
as well as the direction ofEk2 − Ek1. We assume that the first and second laser pulses are
both linearly polarized at anglesα1 andα2, respectively, to thex-axis. In the plane wave
approximation the electric field at some pointEr in the sample is given by

EE = E(12)(x̂ cosα1+ ŷ sinα1)e
i(Ek1·Er−ωt) + E(12)(x̂ cosα2+ ŷ sinα2)e

i(Ek2·Er−ωt), (5)

wherex̂ and ŷ are unit vectors along thex- andy-axes, respectively. We expand (5) into a
sum of two orthogonal circularly polarized electromagnetic plane waves whose components
are written as

EE = EE+ + EE−, (6)

with

E± = E(12)

2
(x̂ ± iŷ)(ei(Ek1·Er−ωt∓α1) + ei(Ek2·Er−ωt∓α2)), (7)

where subscripts ‘+’ and ‘−’ stand for the counterclockwise and clockwise circular
polarizations, respectively, as viewed from the positivez-direction. Since the quantization
axis z is chosen along the pulse propagation direction, the counterclockwise polarized
component of the electromagnetic field contains only photons with thez-component
of the spin equal to+1, and therefore excites only the transition|6S, mJ = − 1

2〉 →
|6P, mJ = + 1

2〉. Similarly, the clockwise field affects only the|6S,+ 1
2〉 → |6P,− 1

2〉
transition. Transforming (7) into

E± =
√

2E(12)
(x̂ ± iŷ)√

2
ei(Ek·Er−ωt∓(α1+α2)/2)C±(x), (8)

where

C±(x) = cos1
2(δ
Ek · Er ∓ (α2− α1)) = cos1

2(xδk ∓ (α2− α1)), (9)

Ek = (Ek1 + Ek2)/2 andδEk = Ek2 − Ek1, we see that the pair of the first two electromagnetic
pulses (5) corresponds to the excitation operator

R(12) =
+ 7

2∑
mI=− 7

2

+ 1
2∑

mJ=− 1
2

(amJ |6S, mJ ,mI 〉 + bmJ |6P,−mJ ,mI 〉)〈6S, mJ ,mI |, (10)

where

a∓1/2(Er) = cos(2(12)C±(x)/2), (11)

b∓1/2(Er) = ±ieiEk·Ere∓i(α1+α2)/2 sin(2(12)C±(x)/2), (12)

andmI is the nuclear spin. Throughout this paper, bold italic is used to indicate an operator.
In the above equations,2(12) is the Rabi area of this complex excitation pulse,

2(12) =
√

2E(12)Dtp

h̄
, (13)

wheretp is the duration of the laser pulse and

D = 〈6P,+ 1
2|d+1|6S,− 1

2〉 = −〈6P,− 1
2|d−1|6S,+ 1

2〉 (14)



4004 A I Lvovsky and S R Hartmann

is the dipole moment matrix element for the transition. The equation (14), with

d±1 = Ed · x̂ ± iŷ√
2

(15)

being the spherical components of the dipole moment operatorEd, follows from the Wigner–
Eckart theorem.

There are(2I +1)(2J +1) = 16 states in the ground and 16 states in the excited energy
levels of the investigated transition. Since the caesium atom’s thermal energy at room
temperature is substantially higher than the hyperfine splitting energy but much smaller
than the separation between terminal levels of the transition, the initial state of the caesium
atom can be assumed to be on the ground level, with all 16 substates of the ground level
equally populated. Therefore, the initial state of caesium atoms in the sample is as follows:

|90〉 = 1√
16

+ 7
2∑

mI=− 7
2

+ 1
2∑

mJ=− 1
2

eiϕmJ ,mI |6S, mJ ,mI 〉, (16)

whereϕmJ ,mI is a random phase factor which is different for eachmJ andmI .

2.2.3. Treatment of the emission problem.According to the rules of billiard-ball dynamics,
each crossing between ground and excited state branches of recoil trajectories results in the
formation of a macroscopic dipole moment which generates super-radiant emission. The
dipole moment that corresponds to crossings attc is given by

Edtc =
∑
n, n′

fnn′(t − tc)〈9n|Ed|9n′ 〉, (17)

where the double sum runs over all the trajectories in the crossing branches,|9n〉 and|9n′ 〉
are the wavefunctions associated with these trajectories andfnn′(t − tc) is the billiard-ball
overlap factor (2). As shown in section 2.1.7, complete overlap can be assumed att = tc,
so that allfnn′ ’s in (17) are equal:

fnn′(t − tc) ≡ f (t − tc) = exp

(
−v

2
recoil(t − tc)2

2R2
BB

)
= exp

(
−k

2(t − tc)2kBT

2mCs

)
= exp

(
−π

4

(t − tc)2
(T ∗2 )2

)
, (18)

and (17) becomes

Edtc = f (t − tc)〈9tc|Ed|9tc〉, (19)

where|9tc〉 =
∑

n |9n〉.
At each momentt , we represent the state of the system as a sum|9tc〉 = |6S〉 + |6P〉

where each of the states|6S〉 and |6P〉 includes those|9n〉 that belong, respectively, to
the ground and excited state branches of the recoil diagram. In other words,|6S〉 or |6P〉
represents the state of the whole branch, which, in the further analysis, we treat as a single
trajectory. SinceEd only couples|6S〉 with |6P〉 and is self-adjoint, we can rewrite (19) as

Edtc = f (t − tc)〈6P|Ed|6S〉 + f (t − tc)〈6S|Ed|6P〉 = f (t − tc)〈6P|Ed|6S〉 + c.c. (20)

Further, since the macroscopic dipole moment is phased to radiate along thez-axis, we
only need thedx and dy components ofEd. Rather than calculating these two magnitudes
directly, we shall find the quantities

d̃±1 ≡ 〈6P|d±1|6S〉, (21)
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whose real parts represent the two orthogonal circularly polarized components of the dipole
moment, and then use the relations{

dx = (d̃1+ d̃−1)/
√

2+ c.c.

dy = (d̃1− d̃−1)/
√

2i+ c.c.
(22)

to find Ed.

2.2.4. Free decay (tc = 0). The first pair of excitation pulses creates a coherent
superposition of the ground and excited states of the caesium atom. Before being
inhomogeneously dephased, this coherent superposition gives rise to the FFD. The state
of the system develops in time as

|9〉 = e−iHt/h̄R(12)|90〉, (23)

whereH is the hyperfine interaction Hamiltonian. We expand (23) as|9〉 = |6S〉 + |6P〉
with

|6S〉 = 1
4

∑
mJ ,mI ,m

′
J ,m

′
I

amJ eiϕmJ ,mI G
m′J ,m

′
I

6S,mJ ,mI
(t)|6S, mJ , mI 〉, (24a)

|6P〉 = 1
4

∑
mJ ,mI ,m

′
J ,m

′
I

bmJ eiϕmJ ,mI G
m′J ,m

′
I

6P,−mJ ,mI (t)|6P,−mJ , mI 〉, (24b)

where we have introduced the Green functions

G
m′J ,m

′
I

L,mJ ,mI
(t) = 〈L,m′J ,m′I |e−iHt |L,mJ ,mI 〉 =

4∑
F=3

(CF,mJ+mImJ ,mI
)(C

F,mJ+mI
m′J ,m

′
I

)e−iωL,F t (25)

in the same manner as in [11]. In the above equation, ¯hωL,F is the energy of the hyperfine
sublevelF of level L, the latter being either 6S or 6P.

We note two properties of the above functions. First, since the hyperfine interaction
conserves the total rotational momentum of the electron and the nucleus, the Green function
(25) is nonzero only if

m′I +m′J = mI +mJ . (26)

Second, there is rotational symmetry that manifests itself as

G
m′J ,m

′
I

L,mJ ,mI
(t) = G−m′J ,−m′IL,−mJ ,−mI (t). (27)

Since theϕmJ ,mI are randomly distributed, by substituting (24) into (21) we obtain, for
t > 0:

d̃FFD
m = 1

16

∑
mJ ,mI ,m

′
J ,m

′
I

f (t)amJ b
∗
mJ
〈6P, m′J +m,m′I |dm|6S, m′J ,m

′
I 〉

×(Gm′J ,m
′
I

6S,mJ ,mI
(t))(G

m′J+m,m′I
6P,−mJ ,mI (t))

∗. (28)

The operatordm only couples the ground and excited states with equalmI and opposite
mJ , so in (28),m′J = −m/2. Also, applying condition (26) to expression (28), we find that
the summation indices in the latter must satisfy

m′I +m′J +m = mI −mJ
m′I +m′J = mI +mJ

(29)
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i.e. mI = m′I andmJ = −m/2. Therefore, expression (28) for the dipole moment can be
rewritten as follows:

d̃FFD
m = 1

16

∑
mI

f (t)amJ b
∗
mJ

〈
6P,

m

2

∣∣∣dm ∣∣∣6S,−m
2

〉
(G
− m

2 ,mI

6S,− m
2 ,mI

(t))(G
m
2 ,mI

6P, m2 ,mI
(t))∗. (30)

Also using (14) and expanding

sin( 1
22(12)C±(x)) cos( 1

22(12)C±(x)) = 1
2 sin(2(12) cos{ 12[xδk ∓ (α2− α1)]})

= 1
2

∞∑
n=−∞

(−1)n+1J2n+1(2(12))e
−i(2n+1)(xδk∓(α2−α1))/2, (31)

whereJm is themth order Bessel function, we transform equation (30) to the form

d̃FFD
±1 = −

1

32
iDf (t)e−i(Ek2·Er∓α2)AFFD

± (t)

∞∑
n=−∞

(−1)n+1J2n+1(2(12))e
−in(xδk∓(α2−α1)), (32)

where

AFFD
± (t) =

∑
mI

(G
±1/2,mI
6P,±1/2,mI

(t))∗G∓1/2,mI
6S,∓1/2,mI

(t). (33)

The macroscopic dipole moment given by (32) is phased to radiate alongEk2, Ek2 ± δEk,
Ek2± 2δEk, etc, which is consistent with the above qualitative analysis (see section 2.1.4).

2.2.5. Stimulated echo fan (tc = τ ). The third excitation pulse arrives at the momentt = τ .
The operator associated with this pulse is

R(3) =
+ 7

2∑
mI=− 7

2

+ 1
2∑

mJ=− 1
2

{(
cos

(
2(3)

2

)
|6S, mJ ,mI 〉 − 2imJeiEk3·Er sin

(
2(3)

2

)
|6P,−mJ ,mI 〉

)

×〈6S, mJ ,mI | +
(

cos

(
2(3)

2

)
|6P, mJ ,mI 〉 − 2imJe−iEk3·Er

× sin

(
2(3)

2

)
|6S, mJ ,mI 〉

)
〈6P,−mJ ,mI |

}
, (34)

where

2(3) =
√

2E(3)Dtp
2h̄

(35)

is the pulse’s area andE(3) is its electric field amplitude. The state of the system after the
third excitation pulse is

|9〉 = e−iH(t−τ)/h̄R(3)e
−iHτ/h̄R(12)|90〉, (36)

so that

〈9|Ed|9〉 = 〈90|R†(12)e
iHτ/h̄R

†
(3)e

iH(t−τ)/h̄Ede−iH(t−τ)/h̄R(3)e
−iHτ/h̄R(12)|90〉. (37)

Extracting those terms in (37) that contribute to the crossing attc = τ , i.e. |9ge〉 with
|9gg〉 and |9ee〉 with |9eg〉 (figure 3), we obtain, fort > τ :

EdSF= f (t − τ){〈90|(Rg→g
(12) )

†eiHτ/h̄(R
g→e
(3) )

†eiH(t−τ)/h̄Ede−iH(t−τ)/h̄Rg→g
(3) e−iHτ/h̄R

g→g
(12) |90〉

+〈90|(Rg→e
(12) )

†eiHτ/h̄(Re→e
(3) )

†eiH(t−τ)/h̄Ede−iH(t−τ)/h̄Re→g
(3) e−iHτ/h̄R

g→e
(12) |90〉}

+c.c. (38)
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where the superscripts indicate the components ofR’s in (10) and (34) associated with the
designated transition between the ground (‘g’) and excited (‘e’) states. By applying the
selection rules for the electric dipole transition along with (26), we transform the above
expression into

d̃SF
±1 = −

1

16

∑
mI

ie−iEk3·Erf (t − τ) sin2(3) cos2(3)

×{cos2( 1
22(12)C±(x))G

∓ 1
2 ,mI

6S,∓ 1
2 ,mI

(t)(G
∓ 1

2 ,mI

6S,∓ 1
2 ,mI

(τ ))∗(G
± 1

2 ,mI

6P,± 1
2 ,mI

(t − τ))∗

+ cos2( 1
22(12)C∓(x))G

∓ 1
2 ,mI±1

6S,± 1
2 ,mI

(t)(G
∓ 1

2 ,mI±1

6S,± 1
2 ,mI

(τ ))∗(G
± 1

2 ,mI±1

6P,± 1
2 ,mI±1

(t − τ))∗

− sin2( 1
22(12)C±(x))(G

± 1
2 ,mI

6P,± 1
2 ,mI

(t))∗G
± 1

2 ,mI

6P,± 1
2 ,mI

(τ )G
∓ 1

2 ,mI

6S,∓ 1
2 ,mI

(t − τ)

− sin2( 1
22(12)C∓(x))(G

± 1
2 ,mI∓1

6P,∓ 1
2 ,mI

(t))∗G
± 1

2 ,mI∓1

6P,∓ 1
2 ,mI

(τ )G
∓ 1

2 ,mI∓1

6S,∓ 1
2 ,mI∓1

(t − τ)}. (39)

Converting the grating factors

sin2( 1
22(12)C±(x)) = 1

2 − 1
2 cos(2(12)C±(x)) (40a)

cos2( 1
22(12)C±(x)) = 1

2 + 1
2 cos(2(12)C±(x)), (40b)

we note that in the right-hand side of (40a, b), it is only the second term that constitutes
transient induced grating and needs to be given further consideration. Expanding it into the
Fourier series

cos(2(12)C±(x)) =
∞∑

m=−∞
J2n(2(12))(−1)nein(−xδk±(α2−α1)) (41)

transforms (39) into

d̃SF
±1 = −

1

32
iDe−iEk3·Erf (t − τ) sin2(3) cos2(3)

×
∞∑

n=−∞
J2n(2(12))(−1)ne−nxδk(ASF

± (t, τ )e
±n(α2−α1) + BSF

± (t, τ )e
∓n(α2−α1)),

(42)

where

ASF
± (t, τ ) =

∑
mI

G
∓ 1

2 ,mI

6S,∓ 1
2 ,mI

(t)(G
∓ 1

2 ,mI

6S,∓ 1
2 ,mI

(τ ))∗(G
± 1

2 ,mI

6P,± 1
2 ,mI

(t − τ))∗

+
∑
mI

(G
± 1

2 ,mI

6P,± 1
2 ,mI

(t))∗G
± 1

2 ,mI

6P,± 1
2 ,mI

(τ )G
∓ 1

2 ,mI

6S,∓ 1
2 ,mI

(t − τ) (43)

is associated with the evolution process where the quantum numbermJ is conserved, and

BSF
± (t, τ ) =

∑
mI

G
∓ 1

2 ,mI±1

6S,± 1
2 ,mI

(t)(G
∓ 1

2 ,mI±1

6S,± 1
2 ,mI

(τ ))∗(G
± 1

2 ,mI±1

6P,± 1
2 ,mI±1

(t − τ))∗

+
∑
mI

(G
± 1

2 ,mI∓1

6P,∓ 1
2 ,mI

(t))∗G
± 1

2 ,mI∓1

6P,∓ 1
2 ,mI

(τ )G
∓ 1

2 ,mI∓1

6S,∓ 1
2 ,mI∓1

(t − τ) (44)

where it is not. In agreement with the previous analysis, the dipole moment (42) is phased
along Ek3+ n δEk.
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2.2.6. Two-pulse echo fan (tc = 2τ ). As timet approaches the value of 2τ , the billiard balls
associated with the states|9eg〉 and|9ge〉 start to overlap, resulting in a macroscopic dipole
moment manifesting itself as a two-pulse photon echo fan (EF). Extracting appropriate terms
in (37) we find, fort > τ :

EdEF = f (t − 2τ)〈90|(Rg→g
(12) )

†eiHτ/h̄(R
g→e
(3) )

†

×eiH(t−τ)/h̄Ede−iH(t−τ)/h̄Re→g
(3) e−iHτ/h̄R

g→e
(12) |90〉 + c.c. (45)

This expression, on application of the selection rules and expanding the transient induced
grating factor into Fourier series (31), transforms into

d̃EF
±1 =

1

32
iDf (t − 2τ)e−i(2Ek3−Ek1)·Er sin22(3)

∞∑
n=−∞

(−1)n+1J2n+1(2(12))e
−inxδk

×(e∓iα1±in(α2−α1)AEF
± (t, τ )+ e±iα1∓in(α2−α1)BEF

± (t, τ )). (46)

where the evolution factors

AEF
± (t, τ ) =

∑
mI

(G
± 1

2 ,mI

6P,± 1
2 ,mI

(t − τ))∗(G∓
1
2 ,mI

6S,∓ 1
2 ,mI

(τ ))∗G
∓ 1

2 ,mI

6S,∓ 1
2 ,mI

(t − τ)G±
1
2 ,mI

6P,± 1
2 ,mI

(τ ) (47)

and

BEF
± (t, τ ) =

∑
mI

(G
± 1

2 ,mI±1

6P,± 1
2 ,mI±1

(t − τ))∗(G∓
1
2 ,mI±1

6S,± 1
2 ,mI

(τ ))∗G
∓ 1

2 ,mI±1

6S,± 1
2 ,mI

(t − τ)G±
1
2 ,mI

6P,± 1
2 ,mI

(τ )

+
∑
mI

(G
± 1

2 ,mI∓1

6P,∓ 1
2 ,mI

(t − τ))∗(G∓
1
2 ,mI

6S,∓ 1
2 ,mI

(τ ))∗G
∓ 1

2 ,mI∓1

6S,∓ 1
2 ,mI∓1

(t − τ)G±
1
2 ,mI∓1

6P,∓ 1
2 ,mI

(τ )

(48)

are defined analogous to those in equation (42).
Note that for all three types of CFE it follows from equation (27) that

A+(t) = A−(t)
B+(t) = B−(t)

. (49)

2.2.7. Polarization properties. It is instructive to analyse equations (32), (42) and (46) for
the case when there is no hyperfine splitting in the ground or excited level. If so, for all
three fans,A±(t) = 1 andB±(t) = 0 . As a result, the amplitudes of̃d+1 and d̃−1 are
the same, and the superposition of the two circularly polarized fields they create yields a
linearly polarized field (22). The polarization angle of this field is given by

αFFD
n = α2+ n(α2− α1) (50)

for the nth component of the FFD,

αSF
n = n(α2− α1) (51)

for the stimulated fan (SF) and

αEF
n = −α1+ n(α2− α1) (52)

for the two-pulse EF, as shown in figure 4. The results (50)–(52) can be intuitively
understood as follows. First, (50) is straightforward for the FFD components withn equal
to 0 and−1: these two components are just the free polarization decay fields brought about
by the two excitation pulses and should have the same polarization as the latter. Forn = −2
andn = 1, the relation (50) obtains if these two components of the FFD are considered as
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Figure 4. CFE polarization angles in several first orders. The excitation pulses are shown
with heavy lines. (a) The polarization angles in the case of a two-level system for arbitrarily
polarized excitation pulses. In (b) we specialize to our experimental conditions ofα1 = 90◦,
α2 = 0◦. Each CFE component is numbered according to (32), (42) and (46).

two-pulse photon echoes caused by the first two excitation pulses. It is known [13] that a
two-pulse echo is linearly polarized at the angle

αecho= 2α2− α1 (53)

if the first and second excitation pulses are polarized at anglesα1 andα2, respectively. The
result (50) for other values ofn can be obtained by regarding thenth FPD component as a
two-pulse photon echo with respect to the(n−1)th and(n−2)th components and applying
the equation (53) successively to all values ofn. Similarly, the relations (51), (52) can be
derived by considering the SF or EF component as, respectively, a stimulated or two-pulse
photon echo caused by one of the FFD components and the third excitation pulse.

Equation (53), originally derived for a simplistic two-level system, holds true for the
photon echoes in caesium vapour only if hyperfine interaction is neglected. So do results
(50)–(52). The quantitiesA(t, τ ) andB(t, τ ) in the equations (42) and (46) are complex
numbers, and yield, generally speaking, unequal results for the amplitudes ofd̃+1 and d̃−1

when multiplied by phase factors and added. Therefore, the FPE in the considered system
are normally elliptically polarized.

However, if the first two excitation pulses are polarized along or normal to the
polarization of the third pulse, the relative phase factors in front ofA±(t) andB±(t) in
the equations (42) and (46) are real. Thus, and because of the relations (49), all the CFE
components are linearly polarized as shown in figure 4(b) (specialized toα1 = π/2, α2 = 0)
and the relations (50)–(52) stay valid. For givenτ , the intensity temporal profile of the
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Figure 5. The detector response function as displayed on a Tektronix 7104 mainframe using
a 7A29 input amplifier. It responds to the output of a 1 GHz bandwidth ‘fast FND’ which is
irradiated by a 10 ps optical excitation pulse. The zero of time is chosen at the peak of the
response so that the displayed intensity will appear undelayed by the ‘slow’ detector response.
This facilitates comparison between experimental measurements and theory.

stimulated and two-pulse fan components should then only depend on whethern is even or
odd. This case was realized in our experiment.

2.2.8. Modulation properties. The intensity of thenth CFE component is proportional to

I (n)(t, τ ) ∝ (d̃(n)+1)
2+ (d̃(n)−1)

2 (54)

where d̃(n)±1 stands for thenth term of the sum in expressions (32), (42) and (46). The
intensity (54) is modulated with the frequencies of the hyperfine splitting in the ground and
the excited states. To be compared with experimentally observed oscilloscope traces, this
intensity had to be convolved with the photodetector response functionV (t) (figure 5). The
latter was obtained as the photodetector’s response to a short (10 ps) laser pulse.

The expression (54) assumes the validity of the phase matching condition [14]

(φ
(n)

(i) )
2� λ

L
, (55)

whereφ(n)(i) is the angle between thenth fan component and theith excitation pulse and
L = 1 cm is the thickness of the sample. If this inequality does not hold, the intensity of a
component will diminish.

3. Experiment

The sample was excited with spectrally filtered [15], amplified 894 nm pulses from a Spectra
Physics 375B dye laser synchronously pumped by a Spectra Physics series 3000 Nd-YAG
laser. These pulses were characterized by energies up to 1µJ, a close to transform limited
spectrum and a 10 ps width. All hyperfine sublevels were equally excited. The schematic
diagram of the optical set-up is shown in figure 6. Emerging from the amplifier, circularly
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Figure 6. A schematic diagram of the CFE experiment.
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Figure 7. The experimental waveform of the FFD component atn = 2 is shown with a full curve
along with the theoretically expected one. The heavy dotted curve is the result of subtracting a
background waveform (taken with the detuned laser) from the signal waveform (taken with the
laser at resonance).

polarized pulses were split into three with a system of beamsplitters and mirrors so that
the first two pulses were sent into the cell simultaneously, and the third one at a variable
delay. All three pulses went through Glan prisms which rendered one of the first two pulses
vertically and the other two horizontally polarized. The three excitation pulses entered
the sample along three noncoplanar directions. Thusk vectors formed a pyramid with an
equilateral triangle base and each angle at the apex about 0.003 rad. The two lenses and
a pinhole behind the sample formed a spatial filter facilitating selection of the required
fan component by moving the pinhole in the vertical plane, according to figure 4. The
CFE signals were registered by a 1 GHz bandwidth EG&G C30902E avalanche photodiode
(APD), connected to a 1 GHz Tektronix A7129 amplifier mounted in a 7104 oscilloscope
mainframe. The intensity of the excitation pulses was also monitored with a EG&G FND-
100 silicon photodiode (FND). The synchronism between the first two pulses was determined
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Figure 8. The n = 1 SF component oscilloscope traces are shown along with their theoretical
prediction (heavy curve) for three different values of the delayτ .
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Figure 9. Experimental data of the integrated SFn = 1 component as a function ofτ . The full
trace is the theoretical fit done by varying the scale and background values.

by observing the EF, the delayτ of the third pulse was found with an error of about 40 ps
via the technique described in [11].

Our sample was a 1 cmlong quartz cell containing saturated caesium vapour at about
45◦C. Measurements performed in [11] showed that at this temperature the sample remains
optically thin so that propagation effects had no effect on CFE intensity patterns.

All the CFE components shown in figure 4 were actually observed in the experiment.
The polarization of each component was determined by rotating an analyser in front of the
APD detector and was found to be consistent with what was theoretically predicted. The
signals observed when the analyser was rotated by 90◦ from the expected polarization were
degraded by at least 95%.

The observed CFE signals in the experiment exhibited dramatic quantum beats
associated with the 1 GHz hyperfine splitting of the 6P level. The beats caused by the
9 GHz hyperfine structure of the ground level have not been observed because they were
beyond the bandwidth of our electronics. The unique quantum beat structure of each of
the CFE components provided us with a kind of signature that facilitated comparison of
theoretical results with experiments.

A typical oscilloscope trace corresponding to the first FFD component is shown in
figure 7. Since the polarization of one of the first two excitation pulses was the same as
that of the observed FFD component, we were unable to fully eliminate the leakage of this
pulse through the spatial filter. The oscilloscope trace thus displayed a combination of the
contributions from the FD signal and the leaking excitation pulse. In order to determine what
part of the observed trace was due to this leakage we performed a set of measurements with
the dye laser detuned from resonance so that there was no FD signal entering the detector.
In this case the traces exhibited substantially lower intensity and different shape. The dotted
curve in figure 7 shows the result of subtracting the oscilloscope waveforms obtained with
the laser in and out of resonance. This gave us the shape of the free decay signal and is
in good agreement with the theoretically expected one plotted in figure 7 with a heavy full
curve.

Figures 8(a)–(c) present the shapes of the first (n = 1) SF component at three different
values of the delayτ . Since this signal was vertically polarized, whereas the third excitation
pulse was polarized horizontally, it was possible to completely eliminate the leakage of the
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Figure 10. Typical experimental two-pulse echo traces for even (a) and (c) and odd (b) and (d)
values ofn are shown for two values ofτ . The scale of each waveform is arbitrary, the heavy
curve shows the theoretically predicted waveform.

latter, so that the above correction was not necessary. Each graph shows six waveforms
acquired with six laser shots. Good reproducibility and excellent agreement with theory are
achieved.

We also performed a set of measurements of the time integrated intensity of the first
SF component versus delayτ . The output of the avalanche photodetector was directed into
a Stanford Research Systems gated integrator. For each value of a delay, integration of
100 echo pulses over the 40 ns gate was performed. The average values of the integral are
plotted in figure 9 along with the theoretical fit obtained by varying its vertical scale and
background value. Unlike the time-dependent intensity patterns, both ground and excited
state hyperfine modulations are resolved here.

Finally, we have obtained oscilloscope traces of the two-pulse EF up to its third
component. As expected (figure 10), the shapes of the echo waveforms for givenτ only
depend on whethern is odd or equal.

There is an obvious difference between the intensity patterns of the EF emissions and
other types of CFEs. The former are practically symmetric with respect to the pointt = 2τ
(figure 10), while the latter quickly fall off fort < 0 (FFD, figure 7) andt < τ (SF,
figure 8). This behaviour is readily understood as the echoes arise from a rephasing process
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Figure 10. (Continued)

while the FFD’s and SF’s are generated at the exact moment the associated excitation pulses
are applied. Thus echoes last for a time of order 2T ∗2 while the FFDs and SFs last for only
half that time.

Most of the CFE oscilloscope waveforms are modulated with the 1.168 GHz frequency
of the 6P state hyperfine splitting. The depth of modulation depends onn andτ ; for example,
the oddn SF components withτ = 3.133 ns (figure 8(c)) experience very minor modulation.
The exact shape and symmetry of each intensity pattern depends on the relative position
of the bell-shaped BBM overlap factor with respect to modulation peaks [11]. For odd
values ofn andτ = 3.580 ns the signals are symmetric since the overlap factorf 2(t − 2τ)
is centred over one of the peaks (see figure 10(d)). For evenn they are asymmetric as
f 2(t − 2τ) is centred between two of them (figure 10(c)).

Note that some of the experimental oscilloscope traces of CFE components exhibit peaks
that are located on the right- (figure 7) and left-hand sides (figures 8 and 10) of the main
waveform and not accounted for by the theory. These peaks are associated with either the
first two or the third excitation pulses leaking through the spatial filter.
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4. Conclusion

We have demonstrated that by exciting the sample with two simultaneous strong short laser
pulses one obtains the prompt emission of a multitude of coherent FFD signals. These
signals are characterized by the same modulation properties as normal single-pulse free
decay signal but are easier to observe because of their spatial separation from the two laser
beams.

If the two simultaneous excitation pulses att = 0 are followed by the delayed third pulse
at t = τ , one observes two additional types of CFE, stimulated echo fan emitted immediately
following the third pulse and two-pulse EF centred att = 2τ . Each component of these
fans has a unique modulation and polarization pattern which is determined by the atomic
Hamiltonian. This feature demonstrates the potential of this technique as a spectroscopic
tool.
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