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Coherent fan emissions
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Abstract. A transient grating is induced at= 0 in an optically thin caesium vapour sample
using two simultaneous intense short laser pulses Whlch are resonant with the fundamestal 6S
6P,/ transition and characterized by the waveveclqrandkz These pulses are followed by

a third resonant excitation pulserat t with wavevectoks. Prompt and delayed super-radiant
emissions follow with a spatial pattern governed by higher-order diffraction effects. We study
the polarization and modulation properties of these coherent fan emissions.

1. Introduction

The transient induced grating technique has been widely used for exploration of ultrafast
relaxation phenomena in various media [1-3]. Two simultaneous noncollinear pulses
entering a sample induce coherence in the form of a transient grating. A third pulse
probing the sample is diffracted by the grating and scatteredzby k1. The intensity

of the diffracted field measured as a function of the third pulse’s delay yields the coherence
relaxation rate.

This technique can be considered as a special case of the three-pulse stimulated photon
echo method. Here the first excitation pulse produces a coherent superposition between the
ground and excited states which is then transferred by the second excitation pulse into a
coherent superposition separately between the ground states and between the excited states.
In this manner excited and ground state gratings have been formed. The relaxation rate
of either the ground state or excited state coherent superposition is generally much slower
than that of a ground—excited state superposition. Therefore to study grating relaxation
it is necessary that the second excitation pulse immediately follows the first. This is the
motivation for applying the first two pulses simultaneously.

When the temporally overlapping excitation pulses are intense the gratings produced
scatter in many orders and echo experiments become very rich [4, 5]. In [4] standing
wave excitation pulses were generated by deploying temporally overlapping laser pulses
into the sample from opposing directions. A multitude of echoes were produced at times
t. = t(l4+n1/2n5), wheren; andn, are arbitrary integers, when two such pulses separated
by © were used.

In this paper we excite a caesium vapour sample with nearly collinear pulses and
examine the temporal characteristics of the many super-radiant emissions which occur in
the various diffraction orders. At= 0 we apply a simultaneous pulse pair with wavevectors
k1 andk, followed att = © by a third withks. Prompt emissions appearrat 0 andt and
a delayed emission appears at For the excitation pulses we use, these emissions appear
in a fan-like array and are called coherent fan emissions (CFE). The CE @atare called
fan free decays (FFD) while those atand Z are called fan photon echoes (FPE).
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2. Theory

The foregoing theoretical analysis consists of two parts. In the first part, we get some insight
into the physics of CFE by considering their formation on a simple two-level system. In the
second, we develop the technique for exact quantitative analysis of CFE in caesium vapour.

2.1. The origin of the fans

2.1.1. Billiard-ball echo model. Our theoretical analysis uses the billiard-ball model [6-8]
of coherent phenomena in gases since it provides a simple means of presenting an otherwise
complicated experiment. The idea is to represent each atom in the sample by a wavepacket
(whose size is determined by the thermal distribution of atomic momenta) and to follow
its development in time as it is subjected to short (compared with the inverse Doppler
width) optical excitation pulses. Each excitation pulse will generate additional wavepackets
which represent the new states the initial wavepacket has been coupled to by the pulse. All
wavepackets recoil according to the momentum of the photon absorbed or emitted. When
a sequence of excitation pulses is applied, the initial wavepacket divides and redivides
with the result that the several wavepackets that have been produced separate, recombine,
separate again and so on. Associated with overlapping wavepackets is a macroscopic
dipole moment which can generate super-radiant emission. Thus by simply following the
wavepacket (billiard-ball) trajectories and noting when they cross one discovers the temporal
development of these emissions. These trajectories are displayed in a recoil diagram which
also serves as a Feynman diagram [7]. This recoil diagram shows the billiard-ball-centre
displacements as a function of time.

The degree of wavepacket overlap is determined by associating, with each trajectory, a
billiard ball whose density as a function sfis given by

- -3/2
> o _(F—7)2/R2
p(F — 7)) = (\/ ERBB> e, )

whereRgg = hi//mcsks T is the billiard-ball radiusmcs is the mass of an atom (caesium
in our case)ks is the Boltzmann constart; is the temperature and lies on the trajectory.
When billiard balls of trajectories and j overlap a macroscopic dipole moment is formed
whose amplitude is proportional to the integral

fij = / p(F = F)p(F — 7y) & = e 177"/ @Rew), )

All that is necessary for sizable super-radiance to occur is that the trajectories come within
Rgg of each other (exact crossing is not required).

In an optically thin gas (such as in our experiment), Doppler dephasing determines the
duration of super-radiant emissions. One way of estimating the Doppler dephasing time is
to divide the optical wavelength by the thermal velocity. Another (as in the billiard-ball
method) is to divide the de Broglie wavelength of the atomic wavepadkgs)(by the
atomic recoil velocity. Both methods give identical results.

An example is shown in figure 1 which displays a complete recoil diagram for a
conventional stimulated photon echo experiment in which excitation pulses are applied
att = 0, 1, andt,. Whenever a laser pulse hits the sample, each trajectory in the diagram
splits into two branches that correspond to the excited and ground state billiard balls. The
intersection of any two trajectories indicates that the associated billiard balls have come
into overlap so that there may be a burst of coherent radiation from the sample.
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Figure 1. A recoil diagram for a conventional stimulated photon echo experiment with excitation
pulses applied at = 0, 71, and 2. The simulated echo appearsrat t1 + 2 and the normal
two-pulse echo at = 2r1. In addition to these conventional echoes this diagram shows that
echoes are to be expectedr at 2t, — 211, 212 — 11, and 2. If 73 < 7 there is also a prompt
coherent scattering at= 7 from the grating produced by the initial pulse pair. This scattering
can be associated with extrapolated crossings=aty — 7.

2.1.2. Stimulated echo pulse sequencReferring to figure 1, we first assume that the
separationr; between the first two pulses is much smaller than the delagf the third
pulse and bothy andr, are substantially greater than the inhomogeneous dephasingfime

T, €1 <12 ®)

In other words, we assume that the two billiard balls created by the first pulse have enough
time to drift apart before the sample is hit by the second one.

In this case, there is a photon echo associated with each crossing (the noncollinearity
of the excitation pulses is so slight that it can be neglected) of the figure 1 recoil diagram
trajectories. The wavevector associated with each echo is equal to the difference between the
wavevectors of the crossing trajectories. The crossing=ar, for example, corresponds
to the two-pulse echo phased to radlatelqt—Zkl, two crossings at the moment= 71 + 12
are associated with the stimulated photon echoes, and a series of crossings=n2as
result in two-pulse echoes caused by one of the first two and the third excitation pulses.

The situation changes if inequality (3) is modified in the following manner:

11 ST < 12, 4)

so that the two billiard balls created by the first excitation pulse still overlap when the second
pulse arrives. In figure 1 the trajectories associated with wavevectors ®;and, + k3
technically do not cross. However, at the momest 7, the two billiard balls represented
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by these trajectories still do overlap resulting in the prompt scattering of the third pulse along
k3 + (kl - kz) This signal can be associated with the extrapolated crossing-ab — ;.

2.1.3. Induced grating limit. The situation becomes even more interesting wheg: 0,

i.e. the first two pulses overlap. The sample is now simultaneously exposed to photons
with wavevectorsk; and k,. An atom absorbing: of the former and emittingn of the

latter will recoil with momentumh(_nl_él — miz). The case where the former are emitted
and the latter are absorbed is obtained by makirapdm negative. Fojn — m| = O the

atom remains in the ground state, far— m| = 1 it is excited. The various trajectories
corresponding to different values af and m form a fan (see figure 2). Here we have
labelled the recoiling trajectories with the vectors (n + 1)k; — nk2 and the ground

state trajectories with thé vectorsnk; — nk,, n being an integer associated with each
trajectory. Since the trajectories are four dimensional we display them by showing their
three projections in figures R(—(d). Note that in these figures we have exaggerated
the differences in the wavevectors so that the diagrams are easier to read. Actually, the
difference is so small that if the trajectories had been drawn to scale they would not appear
to fan out.

2.1.4. Free decay. Billiard balls associated with the various trajectories overlap &t0

and then separate as the trajectories diverge. The overlap of billiard balls associated with
adjacent ground and excited state trajectories leads to a fan of coherent emissions along
(n1 + 1)k1 — I’llkg — }’lz(k]_ — kz) = (An+ 1)k1 Ankz whereAn =n; —ny is a pOSItIVG

or negative integer. These FFDs are the optical analogues of the free induction decays of
nuclear magnetic resonance.

The difficulty with the experimental observation of a free decay (FD) is that it is easily
masked by the excitation pulse which induces it. Typically, the intensity of the excitation
pulse is at least an order of magnitude greater than that of the FD. For an excitation pulse
short enough to cover the optical resonance lineshape, the FD will lagt;fobut 7
is usually too short to enable one to disentangle the FD from the excitation pulse and
consequently masking occurs.

The first FD observation [9] succeeded by only exciting a small fraction of the resonance
lineshape so that the FD persisted long affgr More recently the FD associated with a
second harmonic signal was made possible without recourse to a partial excitation of the
resonance lineshape by exploiting the difference in the frequencies of the excitation pulse
and FD signals [10].

The transient induced grating technique, which we have discussed here, offers another
way of observing a FD. Since the FFDs are simply an array of FDs, directed aiokg
2k2 - kl, 3k, — 2kq etc, all except those directed aloiagand kz can be spatially separated
from the intense excitation pulses.

2.1.5. Stimulated echo fanAfter applying an excitation pulse at = 0 with two
noncollinear components alonlg and k, a third pulse is applied at = r along k3.

As shown in figure 2, each of the original fans then branches to produce new fans along
(n+ 1)k1 —nkz—kg andn(kl —kz) +k3 according to whether the photon stimulates emission

or is absorbed. Prompt coherent emissions are again produced by the overlap of billiard balls
associated with adjacent trajectories, keeping in mind that the angular spread of any fan is
so small that it does not lead to any additional reduction in billiard-ball overlap. The upper
branch leads to emissions alo(wg+l)k1 nlkz—((n2+l)k1 noky— k3) = k3+An(k1—k2)
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Figure 2. Three projections of a four-dimensional recoil diagram associated with excitation
pulses applied alond;, k» andks at timess = 0, 0 andz. Each trajectory is labelled with an
integern and thek vector of each trajectory is given as a functionzofThe angular separation

of the wavevectors is greatly exaggerated to enable the different trajectories to be distinguished.
(a) The orientation of the vectors is displayed.b) The z, x recoil displacement is given as a
function of¢. (c) The z, y recoil displacement is given as a functionzof(d) The y, x recoil
displacement is given as a function rof

as does the lower branch sintz@(l_él — I_ég) + Eg — nl(l_él — 122) = Eg + An(iél - %z). These
are prompt scatterings of the third pulse off the grating produced by the first complex pulse
and are related to the stimulated echo in the manner described previously.

2.1.6. Two-pulse photon echo fanin the neighbourhood of = 2¢ the fan trajectories
created by the pulse at= t effectively cross to produce an echo emission array along
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nl(%l - %2) + %3 — ((n2 + 1)%1 - nz%z - 753) = 2%3 + (An — 1)%1 - Anl?z. These are the
analogues of the normal two-pulse photon echo.

2.1.7. Fan divergence exaggerationAs previously noted, figure 2 greatly exaggerates
the separation between recoil trajectories corresponding to different fan components within
the same quantum state. In our experiment, the angle betieand k, is about 0.003
rad which is equal to the angular separation between the recoil trajectories. Drawn to this
scale the fans in figure 2 would coalesce to a single trajectory. It suffices then to draw a
two-dimensional recoil diagram which we do in figure 3, specializing te- 2 ns. The
ordinate representing the recoil displacement corresponds to the direction of the laser pulses.
In this figure, which has been drawn to scale, we show the outline of the billiard ball (1)
representing atoms in a Cs atomic vapour at@5s

It follows that in calculating coherent emission intensity the displacement of billiard
balls associated with angling betweén k, and k3 can be neglected, so that the recoil
velocity is Vrecoil & hk/mcs for the excited state billiard balls and zero for the ground state
ones. The billiard balls associated with different trajectories of the same branch can be
considered completely overlapping.

2.2. The calculation of fans

2.2.1. Fundamental transition in caesiumWe work on the 6§,—6P., transition in
caesium vapour. As shown by the photon echo experiments [11] on the same transition,
this system is very well understood and therefore a well-suited medium for conceptual
experiments involving physics of coherent phenomena. Both ground and excited levels of
the transition contain two magnetic substates with quantum numpemqual to% and—%,
in addition, each level is split into two sublevels due to hyperfine interaction.

Since the nuclear spin of Csis= % the quantum numbei® of the hyperfine sublevels
are 3 and 4 for both 6S and 6P states. The magnitude of hyperfine splitting is 9.193 GHz
for 6S and 1.168 GHz for 6P [12] and for both levels, the= 4 sublevel lies above the
F = 3. Our excitation pulses are very short in comparison with the periods of the above
frequencies. One can therefore neglect the hyperfine interaction while the excitation pulse is
applied and assume that all hyperfine levels are equally excited. On the other hand, since the
splitting frequencies substantially exceed the inverse delay between excitation pulses, the
guantum numbei ; is not conserved after an excitation pulse and super-radiant emissions
exhibit dramatic modulation effects [11].
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2.2.2. Optical excitation by two simultaneous pulseSonsider a caesium sample being
resonantly excited at = O by two laser pulses with equal electric field amplitulgy,

and slightly noncollinear wavevectot?s and 132. We choose our reference frame so that
the z-axis coincides with the pulses’ propagation direction (neglecting their small angular
separation) and the-axis is along the electric field polarization of the third excitation pulse,
as well as the direction ofz - kl We assume that the first and second laser pulses are
both linearly polarized at angles and«,, respectively, to the:-axis. In the plane wave
approximation the electric field at some poinin the sample is given by

E = Eqp (% cosay + 9 sinay)d®@7=o) 4+ E 15 (£ cosa + 3 sinag)d @ o0, (5)

wherex andy are unit vectors along the- and y-axes, respectively. We expand (5) into a
sum of two orthogonal circularly polarized electromagnetic plane waves whose components
are written as

E=E,+E_, (6)
with

(12)

Ey = ( +i )(el(kﬂ wl:Fal)_i_el(sz wf:Folz)) (7)

where subscripts +’ and stand for the counterclockwise and clockwise circular
polarizations, respectively, as viewed from the positivéirection. Since the quantization
axis z is chosen along the pulse propagation direction, the counterclockwise polarized
component of the electromagnetic field contains only photons with zteemponent

of the spin equal to+1, and therefore excites only the transitiosS m,; = —%) —
|6P,m; = +1). Similarly, the clockwise field affects only thgS +3) — 6P, —3)

transition. Transforming (7) into
x£iy)

V2

E: = V2Euy k7 —orF@te/2) o, (x), (8)

where
Ci(x) = COS3(SK - F F (a2 — @1)) = COSF(x8k F (o2 — 1)), 9)

k= (121 + EZ)/Z and sk = 752 — 121, we see that the pair of the first two electromagnetic
pulses (5) corresponds to the excitation operator

+2 +2
Ray= ) Z (am,|6S my, mp) + by, |6P, —m s, m))(6S m;, my|, (10)
my==3my==3
where
az1/2(r) = 04O 12 C+(x)/2), (11)
b1/2(F) = £ie* T eF @ 2 5in(@ 15 C(x)/2), (12)

andm; is the nuclear spin. Throughout this paper, bold italic is used to indicate an operator.
In the above equation®) 1, is the Rabi area of this complex excitation pulse,
V2Eqy D1,
A )
wheret, is the duration of the laser pulse and
= (6P, +3|d1|6S —3) = —(6P, —3|d_1|6S +3) (14)

BOuy = (13)
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is the dipole moment matrix element for the transition. The equation (14), with
- Xxiy
diyg=d-
V2

being the spherical components of the dipole moment opeaamnilows from the Wigner—
Eckart theorem.

There arg2/ +1)(2J +1) = 16 states in the ground and 16 states in the excited energy
levels of the investigated transition. Since the caesium atom’s thermal energy at room
temperature is substantially higher than the hyperfine splitting energy but much smaller
than the separation between terminal levels of the transition, the initial state of the caesium
atom can be assumed to be on the ground level, with all 16 substates of the ground level
equally populated. Therefore, the initial state of caesium atoms in the sample is as follows:

(15)

+3 +3
Z Z e mi|6S my, mp), "
. 1

m,=7§ le:—é

1
W) = —
| 0> «/1_6

whereg,,, ., is a random phase factor which is different for each andm;.

2.2.3. Treatment of the emission problenfccording to the rules of billiard-ball dynamics,

each crossing between ground and excited state branches of recoil trajectories results in the
formation of a macroscopic dipole moment which generates super-radiant emission. The
dipole moment that corresponds to crossings. & given by

o= funr(t = 1){W, 1], (17)

where the double sum runs over all the trajectories in the crossing branghesnd |, )
are the wavefunctions associated with these trajectoriesfantt — ¢) is the billiard-ball
overlap factor (2). As shown in section 2.1.7, complete overlap can be assumedrat
so that all f,,,»’s in (17) are equal:

/ (t_t)zf(t—f)—exp<—w)
nn c) = C ZRéB

k2 — 1 2k T — 2
= exp(_%> — exp<_%(f(T2*t)2) >’ (18)

and (17) becomes
d, = f(t —1)(¥, |d| W), (19)

where|W,) = 3", [¥,).

At each moment, we represent the state of the system as a Bym = |6S + |6P)
where each of the statd6S) and |6P) includes thosgW,) that belong, respectively, to
the ground and excited state branches of the recoil diagram. In other we8ixr |6P)
represents the state of the whole branch, which, in the further analysis, we treat as a single
trajectory. Sincead only couples|6S) with |6P) and is self-adjoint, we can rewrite (19) as

d, = f(t — 1) (6PId|BS) + f (1 — 1) (6Sd|6P) = £ (t — o) (6PId|6S) + C.C. (20)

Further, since the macroscopic dipole moment is phased to radiate alopguxie we
only need thed, andd, components of/. Rather than calculating these two magnitudes
directly, we shall find the quantities

di1 = (6P|d41]69), (21)
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whose real parts represent the two orthogonal circularly polarized components of the dipole
moment, and then use the relations

d, = (d1+d_1)/V2+cc.
(~1 ! 1/ 22)
dy = (d1—d_1)/v2i+cc.
to find d.

2.2.4. Free decayt{ = 0). The first pair of excitation pulses creates a coherent
superposition of the ground and excited states of the caesium atom. Before being
inhomogeneously dephased, this coherent superposition gives rise to the FFD. The state
of the system develops in time as

W) = e H/ Ry W), (23)

where H is the hyperfine interaction Hamiltonian. We expand (23)\&s = |6S + |6P)
with

69 =3 D @@ G, (016 my. mp), (243)
my,my,m'y,m;
|6P) = 211 Z bm/é%’""’ G:snl;,;nzj.m:(t)|6R —my, mp), (24b)

my,my,m'y,m

where we have introduced the Green functions
4

G’Z’Iy;:l’lml (t) — <L mj’ m[le IHt|L my, m[) Z(C’gjm”/’j’M1)(CF m7+ml)e—|wL Ft (25)

F=3
in the same manner as in [11]. In the above equatfian, » is the energy of the hyperfine
sublevel F of level L, the latter being either 6S or 6P.

We note two properties of the above functions. First, since the hyperfine interaction

conserves the total rotational momentum of the electron and the nucleus, the Green function
(25) is nonzero only if

my+m;, =m;+my. (26)

Second, there is rotational symmetry that manifests itself as

Gyt 1) =G (), (27)
Since they,,, ,,, are randomly distributed, by substituting (24) into (21) we obtain, for
t>0:

~ 1
drfo = 6 > fwa,, b} (6P.m) +m.m)|d,|6S m;, m))
my,my, mj m,

%Gy ()G, ()" (%)
The operatord,, only couples the ground and excited states with egualand opposite
my, S0 in (28),m’;, = —m /2. Also, applying condition (26) to expression (28), we find that
the summation indices in the latter must satisfy

my+m;+m=m;—my 29)

/ ’
my;+m; =mjy+my
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i.e.m; =m} andm; = —m/2. Therefore, expression (28) for the dipole moment can be
rewritten as follows:
SFFD 1 * m m —%.my 2my "
a0 = 23 fan by, (6P 2 | [6S 3 ) (Gl Y, (G, (1)) (30)
mp

Also using (14) and expanding
SiN(3012 C+(x)) 03012 C+ (x)) = 3 SIN(Op cog 5[ x5k F (a2 — a1)]})

oo
— % Z (_1)n+lJ2”+l(®(12))e—l(2n+l)(x5k:F(0(2—a1))/2, (31)

n=—0oo

where J,, is themth order Bessel function, we transform equation (30) to the form

3 1. _i(kp T - n —in(x ar—a
1P = —5iDf e @R ATRM) Y (=) (O g e T, (32)
n=—oo
where
AFFP() =Y (Geplia 0V GEE (). (33)

mp

_ The macroscopic dipole moment given by (32) is phased to radiate aortg + 8k,
k, £ 28k, etc, which is consistent with the above qualitative analysis (see section 2.1.4).

2.2.5. Stimulated echo fan. (= 7). The third excitation pulse arrives at the momest .
The operator associated with this pulse is

7 1
& & O L i ain [ O
Rg= Y Y {(cos — ) 188 my,my) = 2im, €7 sin( =2 ) 6P, —m . m)
1
J=72

o , oo
x(6S my,mi| + (cos(%) 6P, m, my) — 2im ek

)
x sin(%) 6. m;. m1>> (6P, —m,, m1|} , (34)
where
2E 3 Dt
O@ = # (35)

is the pulse’s area anH s, is its electric field amplitude. The state of the system after the
third excitation pulse is

(W) = e HOOM R e M/ Rygg) | Wo), (36)
so that

(‘D|d|\y) — <‘~IJO|RIlZ)eIHr/ERI3)elH(t_r)/EEle_lH(z_f)/h—R(:g)e_lHr/h—R(]_Z) |\IJO> (37)

Extracting those terms in (37) that contribute to the crossing at r, i.e. |Wge) with
[Wgg) and|Wee) with [Weg) (figure 3), we obtain, for > t:
jSF — f(t _ .L.){<\I/O|(R(QE)Q)TéHI/E(R(Q?;)e)TéH(r—T)/Eae—iH(t—r)/ER(g;ge—iHT/ER?]Z)g|\Ij0>
+<\yo|(R?;)e)TelHr/h (R(eg—)>e)1'éH(T—r)/hde—lH(t—r)/hR(es—))ge—le/hR?]Z)el\yo)}
+c.c. (38)
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where the superscripts indicate the componentR'sfin (10) and (34) associated with the
designated transition between the ground (‘g’) and excited (‘e’) states. By applying the
selection rules for the electric dipole transition along with (26), we transform the above
expression into

~ 1 i .
ast = T > e f(t — 1) sinO 5 cosO )
mj

x(002(10un Cx (NG (NG () (Gl (1 =)

6SF3.m; 6SF5.m; 6P.L3.m
m m +1om,+1
+CO§(%®(12)C:F(X))G:§if (r)(ij;if () (Gep 1 a0 =D
. 1 +1 Jmy % +1 Jmy :F ,mj
—sif(30uC+ () (Geply, ()G ly | (DG (1= 1)
. 1 il,m,qzl % il,m,q:l :F JmyFl
_S|n2(§®(12)C¢(x))(G6F§]F%7mI(t)) Geprt py (MGgars 4t =D)) (39)
Converting the grating factors
SiP (301 C+(x)) = 5 — 3 COLO C1(x)) (408)
coS (3012 C+(x)) = § + 3 COYO 12 C+ (%)), (400)

we note that in the right-hand side of @®), it is only the second term that constitutes
transient induced grating and needs to be given further consideration. Expanding it into the
Fourier series

COSOuzCe(x) = ) Jau(Onz)(—1)"e o) (41)

m=—0oQ

transforms (39) into

3SF 1. kg .
dil - _3_2|De f(t - T) S|n®(3) COS®(3)
[o¢]
X Z Jzn(®(12))(—1)”e7’”‘5k(AiF(tv T)ein(OtZ*Otl) + BiF(Z‘, r)e*”("‘f"‘l)),
n=—0oo
(42)
where
SF — Fzomi Fim; v, ~ELmy "
ASF, ) = ZGGS;% (t)(G6SZJF (O Gl =)
mp
+1m +1m m
F G, O G, G, (-0 43)
mp

is associated with the evolution process where the quantum numpés conserved, and

+1 +1 +1 m+1
B, r>=ZG§;i’"J (r)(G;F;i’"J @) Gy 1y =D
mjp

+3m;F1 +3m;F1 myF1
+ D (Gl ()Gl (x )G;FSZ¥ M) (44)
my

where it is not. In agreement with the previous analysis, the dipole moment (42) is phased
along k3 +n 8k.
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2.2.6. Two-pulse echo fan (= 2t). Astimer approaches the value of 2the billiard balls
associated with the stat¢¥.g) and|Wge) start to overlap, resulting in a macroscopic dipole
moment manifesting itself as a two-pulse photon echo fan (EF). Extracting appropriate terms
in (37) we find, fort > t:
BF = f(t — 20)(Wo | (REDH T €H /M (RE )T

x @H =0/ e tH =0/l Qe 8 e 1 H/l BRI €|wig) + c.c. (45)
This expression, on application of the selection rules and expanding the transient induced
grating factor into Fourier series (31), transforms into

S U oo |
d:EE = 3—2|Df(l — 2'C)e_|(2k3_kl)'r Ser2 @(3) Z (—1)”+1J2,1+1(®(12))e—lnx6k

n=—0oo

X(eﬂaliin(az—al)AiF(t’ 'L') + e:ticq;in(az—al)BEF(t’ 'L')) (46)

where the evolution factors

EE _ +1m, % Il,m, * Ii,m, +1m,
AT (1, 7) = ;(Geéi%,ml(t - 1)) (GeszzF%,m,(f)) G6§¢%,m,(t - T)GESPZ,:E%,mI(T) (47)
and
+1 41 mp+1l Jmy+l
BEF(1,1) = Z Gt yyir @ = O (ij;il’ (T)* G;F;i%’,, (t— r)Gepil (r)
+1m,F1 \my m;Fl +1mF1
+Z(G6P; =) (G;; @ G;; a1 DG (1)
mjy
(48)
are defined analogous to those in equation (42).
Note that for all three types of CFE it follows from equation (27) that
Ar(t)=A_(
+(0) ( ). (49)
By (1) = B_(1)

2.2.7. Polarization properties. It is instructive to analyse equations (32), (42) and (46) for
the case when there is no hyperfine splitting in the ground or excited level. If so, for all
three fans,A.(t) = 1 andB.(r) = 0 . As a result, the amplitudes af.; andd_; are

the same, and the superposition of the two circularly polarized fields they create yields a
linearly polarized field (22). The polarization angle of this field is given by

a0 =y + n(ap — a1) (50)

n

for the nth component of the FFD,

oSF = n(az — ay) (51)

n

for the stimulated fan (SF) and

oFF = —a1 + n(ax — 1) (52)

n

for the two-pulse EF, as shown in figure 4. The results (50)—(52) can be intuitively
understood as follows. First, (50) is straightforward for the FFD componentsmétijual

to 0 and—1: these two components are just the free polarization decay fields brought about
by the two excitation pulses and should have the same polarization as the latter=Fe2

andn = 1, the relation (50) obtains if these two components of the FFD are considered as
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Figure 4. CFE polarization angles in several first orders. The excitation pulses are shown
with heavy lines. §) The polarization angles in the case of a two-level system for arbitrarily
polarized excitation pulses. Ib) we specialize to our experimental conditionseaf = 90°,

az = 0°. Each CFE component is numbered according to (32), (42) and (46).

two-pulse photon echoes caused by the first two excitation pulses. It is known [13] that a
two-pulse echo is linearly polarized at the angle

Qecho= 2002 — 0{1 (53)

if the first and second excitation pulses are polarized at anglesday, respectively. The
result (50) for other values of can be obtained by regarding thth FPD component as a
two-pulse photon echo with respect to ttee— 1)th and(n — 2)th components and applying
the equation (53) successively to all valueszofSimilarly, the relations (51), (52) can be
derived by considering the SF or EF component as, respectively, a stimulated or two-pulse
photon echo caused by one of the FFD components and the third excitation pulse.
Equation (53), originally derived for a simplistic two-level system, holds true for the
photon echoes in caesium vapour only if hyperfine interaction is neglected. So do results
(50)—(52). The quantitieg(z, ) and B(z, t) in the equations (42) and (46) are complex
numbers, and yield, generally speaking, unequal results for the amplitudes ehdd_;
when multiplied by phase factors and added. Therefore, the FPE in the considered system
are normally elliptically polarized.
However, if the first two excitation pulses are polarized along or normal to the
polarization of the third pulse, the relative phase factors in fronofs) and B.(¢) in
the equations (42) and (46) are real. Thus, and because of the relations (49), all the CFE
components are linearly polarized as shown in figul® dpecialized tax; = 7/2, @y = 0)
and the relations (50)—(52) stay valid. For giventhe intensity temporal profile of the
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Figure 5. The detector response function as displayed on a Tektronix 7104 mainframe using
a 7A29 input amplifier. It responds to the outpdtaol GHz bandwidth ‘fast FND’ which is
irradiated by a 10 ps optical excitation pulse. The zero of time is chosen at the peak of the
response so that the displayed intensity will appear undelayed by the ‘slow’ detector response.
This facilitates comparison between experimental measurements and theory.

stimulated and two-pulse fan components should then only depend on whétheven or
odd. This case was realized in our experiment.

2.2.8. Modulation properties. The intensity of the:th CFE component is proportional to
1", 7) o (@)% + (@) (54)

where jlnl) stands for thexth term of the sum in expressions (32), (42) and (46). The
intensity (54) is modulated with the frequencies of the hyperfine splitting in the ground and
the excited states. To be compared with experimentally observed oscilloscope traces, this
intensity had to be convolved with the photodetector response fungtion(figure 5). The
latter was obtained as the photodetector’s response to a short (10 ps) laser pulse.

The expression (54) assumes the validity of the phase matching condition [14]

A
@) < 7 (55)

Wherecp((f)) is the angle between theth fan component and thah excitation pulse and
L =1 cm is the thickness of the sample. If this inequality does not hold, the intensity of a
component will diminish.

3. Experiment

The sample was excited with spectrally filtered [15], amplified 894 nm pulses from a Spectra
Physics 375B dye laser synchronously pumped by a Spectra Physics series 3000 Nd-YAG
laser. These pulses were characterized by energies upd 4 close to transform limited
spectrum and a 10 ps width. All hyperfine sublevels were equally excited. The schematic
diagram of the optical set-up is shown in figure 6. Emerging from the amplifier, circularly
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Figure 6. A schematic diagram of the CFE experiment.
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Figure 7. The experimental waveform of the FFD component at 2 is shown with a full curve

along with the theoretically expected one. The heavy dotted curve is the result of subtracting a
background waveform (taken with the detuned laser) from the signal waveform (taken with the
laser at resonance).

polarized pulses were split into three with a system of beamsplitters and mirrors so that
the first two pulses were sent into the cell simultaneously, and the third one at a variable
delay. All three pulses went through Glan prisms which rendered one of the first two pulses
vertically and the other two horizontally polarized. The three excitation pulses entered
the sample along three noncoplanar directions. Thusctors formed a pyramid with an
equilateral triangle base and each angle at the apex about 0.003 rad. The two lenses and
a pinhole behind the sample formed a spatial filter facilitating selection of the required
fan component by moving the pinhole in the vertical plane, according to figure 4. The
CFE signals were registere¢ b 1 GHz bandwidth EG&G C30902E avalanche photodiode
(APD), connectedd a 1 GHz Tektronix A7129 amplifier mounted in a 7104 oscilloscope
mainframe. The intensity of the excitation pulses was also monitored with a EG&G FND-
100 silicon photodiode (FND). The synchronism between the first two pulses was determined
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Figure 8. Then = 1 SF component oscilloscope traces are shown along with their theoretical
prediction (heavy curve) for three different values of the delay
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Figure 9. Experimental data of the integrated 8= 1 component as a function ef The full
trace is the theoretical fit done by varying the scale and background values.

by observing the EF, the delayof the third pulse was found with an error of about 40 ps
via the technique described in [11].

Our sample wa a 1 cmlong quartz cell containing saturated caesium vapour at about
45°C. Measurements performed in [11] showed that at this temperature the sample remains
optically thin so that propagation effects had no effect on CFE intensity patterns.

All the CFE components shown in figure 4 were actually observed in the experiment.
The polarization of each component was determined by rotating an analyser in front of the
APD detector and was found to be consistent with what was theoretically predicted. The
signals observed when the analyser was rotated byréth the expected polarization were
degraded by at least 95%.

The observed CFE signals in the experiment exhibited dramatic quantum beats
associated with the 1 GHz hyperfine splitting of the 6P level. The beats caused by the
9 GHz hyperfine structure of the ground level have not been observed because they were
beyond the bandwidth of our electronics. The unique quantum beat structure of each of
the CFE components provided us with a kind of signature that facilitated comparison of
theoretical results with experiments.

A typical oscilloscope trace corresponding to the first FFD component is shown in
figure 7. Since the polarization of one of the first two excitation pulses was the same as
that of the observed FFD component, we were unable to fully eliminate the leakage of this
pulse through the spatial filter. The oscilloscope trace thus displayed a combination of the
contributions from the FD signal and the leaking excitation pulse. In order to determine what
part of the observed trace was due to this leakage we performed a set of measurements with
the dye laser detuned from resonance so that there was no FD signal entering the detector.
In this case the traces exhibited substantially lower intensity and different shape. The dotted
curve in figure 7 shows the result of subtracting the oscilloscope waveforms obtained with
the laser in and out of resonance. This gave us the shape of the free decay signal and is
in good agreement with the theoretically expected one plotted in figure 7 with a heavy full
curve.

Figures 8&)—(c) present the shapes of the firat-£ 1) SF component at three different
values of the delay. Since this signal was vertically polarized, whereas the third excitation
pulse was polarized horizontally, it was possible to completely eliminate the leakage of the
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Figure 10. Typical experimental two-pulse echo traces for ev@nand €) and odd ) and d)
values ofn are shown for two values aof. The scale of each waveform is arbitrary, the heavy
curve shows the theoretically predicted waveform.

latter, so that the above correction was not necessary. Each graph shows six waveforms
acquired with six laser shots. Good reproducibility and excellent agreement with theory are
achieved.

We also performed a set of measurements of the time integrated intensity of the first
SF component versus delay The output of the avalanche photodetector was directed into
a Stanford Research Systems gated integrator. For each value of a delay, integration of
100 echo pulses over the 40 ns gate was performed. The average values of the integral are
plotted in figure 9 along with the theoretical fit obtained by varying its vertical scale and
background value. Unlike the time-dependent intensity patterns, both ground and excited
state hyperfine modulations are resolved here.

Finally, we have obtained oscilloscope traces of the two-pulse EF up to its third
component. As expected (figure 10), the shapes of the echo waveforms forgively
depend on whether is odd or equal.

There is an obvious difference between the intensity patterns of the EF emissions and
other types of CFEs. The former are practically symmetric with respect to thepeit
(figure 10), while the latter quickly fall off for < O (FFD, figure 7) and < t (SF,
figure 8). This behaviour is readily understood as the echoes arise from a rephasing process
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Figure 10. (Continued)

while the FFD’s and SF’s are generated at the exact moment the associated excitation pulses
are applied. Thus echoes last for a time of ordB} #vhile the FFDs and SFs last for only
half that time.

Most of the CFE oscilloscope waveforms are modulated with the 1.168 GHz frequency
of the 6P state hyperfine splitting. The depth of modulation dependsaodz; for example,
the oddn SF components with = 3.133 ns (figure 8)) experience very minor modulation.

The exact shape and symmetry of each intensity pattern depends on the relative position
of the bell-shaped BBM overlap factor with respect to modulation peaks [11]. For odd
values ofn andt = 3.580 ns the signals are symmetric since the overlap fattar— 27)

is centred over one of the peaks (see figured)O( For evenn they are asymmetric as

f?(t — 21) is centred between two of them (figure &))(

Note that some of the experimental oscilloscope traces of CFE components exhibit peaks
that are located on the right- (figure 7) and left-hand sides (figures 8 and 10) of the main
waveform and not accounted for by the theory. These peaks are associated with either the
first two or the third excitation pulses leaking through the spatial filter.
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4. Conclusion

We have demonstrated that by exciting the sample with two simultaneous strong short laser
pulses one obtains the prompt emission of a multitude of coherent FFD signals. These
signals are characterized by the same modulation properties as normal single-pulse free
decay signal but are easier to observe because of their spatial separation from the two laser
beams.

If the two simultaneous excitation pulses at 0 are followed by the delayed third pulse
att = t, one observes two additional types of CFE, stimulated echo fan emitted immediately
following the third pulse and two-pulse EF centredrat 2r. Each component of these
fans has a uniqgue modulation and polarization pattern which is determined by the atomic
Hamiltonian. This feature demonstrates the potential of this technique as a spectroscopic
tool.
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