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Problem 1. (50 marks)
The optical scheme shown below, with two symmetric beam splitters, is known as “quantum scissors”.
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a) (15 marks) The input state is |χ〉 = α |0〉+ β |1〉 in parts (a–c) and (e). Find the state of the
optical modes 1, 2 and 3 prior to the measurement.

|Ψ〉123 = Û13

(
Û12 |0〉1 ⊗ |1〉2

)
⊗ (α |0〉+ β |1〉)3

=
1√
2
Û13 (|01〉 − |10〉)12 ⊗ (α |0〉+ β |1〉)3

=
1√
2
Û13 (α |010〉 − α |100〉+ β |011〉 − β |101〉)123

=
1

2

(√
2α |010〉 − α |100〉 − α |001〉+ β |011〉 − β |110〉+ β |200〉 − β |002〉

)
123

.

b) (5 marks) Find the state of mode 2 if the detector in mode 1 detects one photon, and the
detector in mode 3 detects no photons. What is the probability p of this event?

|ψout〉 =13 〈10| Ψ〉123 = −1

2
(α |0〉+ β |1〉)2 .

Since |χ〉 is normalized, |α|2 + |β|2 = 1, so the probability of the above state is p = 1/4.

c) (5 marks) What quantum communication protocol does this scheme represent? Identify the
location of the parties and other main elements of this protocol in the above scheme.

This is a teleportation protocol, with the input into mode 3 coming from Alice and the output
of mode 2 going to Bob. The entangled resource 1√

2
(|01〉 − |10〉)12 is produced by the first

beam splitter in modes 1 and 2 and the Bell measurement is implemented in modes 1 and 3
via the second beam splitter. For the latter, projecting onto |10〉13 in the beam splitter output
is equivalent to projecting onto the Bell state 1√

2
(|01〉 − |10〉)13 in its input (the beam splitter

action is symmetric in the two directions).

d) (5 marks) What is the output if the input state is an arbitrary superposition |χ〉 =
∑∞
i=0 ψn |n〉?

Can you guess why the scheme is called “quantum scissors”?
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Any term with n ≥ 2 in |χ〉 will produce at least two photons in the output of the second
beam splitter, meaning that the amplitude of projection onto |1〉 0 is zero. Hence the output
will be the same as in part (b), with α = ψ0 and β = ψ1. “Quantum scirrors” will “cut off”
all Fock terms above n = 1 from the teleported state.

e) (20 marks) Repeat part (b) if the initial single photon in mode 2 is imperfect and produces a
mixture ρ̂1 = η |1〉〈1|+ (1− η) |0〉〈0|. The input state is |χ〉 = α |0〉+ β |1〉.
For |0〉 input in mode 2, we have

|Ψ〉123 = Û23

(
Û12 |0〉1 ⊗ |0〉2

)
⊗ (α |0〉+ β |1〉)3

= Û23 |00〉12 ⊗ (α |0〉+ β |1〉)3

= Û23 (α |000〉+ β |001〉)123

=

(
α |000〉+

1√
2
β |001〉 − 1√

2
β |100〉

)
123

and after the photon detection,

|ψ′out〉 =13 〈10| Ψ〉123 =
1√
2
β |1〉2 .

Since the input in mode 2 is |1〉 with probability η and |0〉 with probability 1− η, the (unnor-
malized) output ensemble is

ρ̂ = η |ψout〉〈ψout|+ (1− η) |ψ′out〉〈ψ′out|

=

(
η

4
|α|2 +

1− η
2
|β|2

)
|0〉〈0|+ η

4
αβ∗ |0〉〈1|+ η

4
α∗β |1〉〈0|+ η

4
|β|2 |1〉〈1| .

The probability is the sum of the diagonal elements,

p =
η

4
+

1− η
2
|β|2.

You can use the beam splitter evolution operator |U〉 in the Fock basis as derived in class:

Û |00〉 = |00〉 ;

Û |10〉 =
1√
2
|10〉+

1√
2
|01〉 ;

Û |01〉 =
1√
2
|01〉 − 1√

2
|10〉 ;

Û |11〉 = − 1√
2
|20〉+

1√
2
|02〉 ,

where the operator of the first beam splitter acts on modes (1,2) and the second one on modes (1,3).

Problem 2. (50 marks) A general waveplate with its optical axis oriented at angle θ transforms
the polarization state of a photon as follows:

Û |θ〉 = ei∆ϕ |θ〉 ; (1)

Û
∣∣∣π
2

+ θ
〉

=
∣∣∣π
2

+ θ
〉
, (2)

where Û is the evolution operator and ∆ϕ is the difference of the phase shifts of the extraordinary
(|θ〉) and ordinary (

∣∣π
2 + θ

〉
) photons.
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a) (5 marks) Write down Û explicitly in its eigenbasis.

Û = ei∆ϕ |θ〉〈θ|+
∣∣∣π
2

+ θ
〉〈π

2
+ θ
∣∣∣ .

b) (5 marks) Suppose this evolution occurs under the action of a fictitious Hamiltonian Ĥ for the
time period t0. Write down Ĥ in its eigenbasis.

Since Û = exp(− i
~Ĥt0), we have Ĥ = ~∆ϕ

t0
|θ〉〈θ|.

c) (20 marks) Find the differential equations for the evolution of the three Pauli operators under
this Hamiltonian in the Heisenberg picture.

Since |θ〉 =

(
cos θ
sin θ

)
≡
(
c
s

)
, we find

Ĥ =

(
c2 cs
cs s2

)
=

1

2
1̂ +

c2 − s2

2
σ̂z + csσ̂x.

Using [σ̂i, σ̂j ] = 2εijkσ̂k, we have

˙̂σx =
i

~
[Ĥ, σ̂x] = −(c2 − s2)

∆ϕ

t0
σ̂y;

˙̂σy =
i

~
[Ĥ, σ̂y] = (c2 − s2)

~∆ϕ

t0
σ̂x − 2cs

∆ϕ

t0
σ̂z;

˙̂σz =
i

~
[Ĥ, σ̂z] = 2cs

∆ϕ

t0
σ̂y.

d) (15 marks) Specializing to a quarter-wave plate at θ = π
4 , solve these equations and find the

corresponding evolution of the Pauli operators.

For θ = π
4 , we hace c = s = 1√

2
, hence

˙̂σx = 0;

˙̂σy = −∆ϕ

t0
σ̂z;

˙̂σz =
∆ϕ

t0
σ̂y.

The solution is

σ̂x(t) = σ̂x(0);

σ̂y(t) = σ̂y(0) cos
∆ϕ

t0
t− σ̂z(0) sin

∆ϕ

t0
t;

σ̂z(t) = σ̂z(0) cos
∆ϕ

t0
t+ σ̂y(0) sin

∆ϕ

t0
t.

For a quarter-wave plate, ∆ϕ = π
2 , hence σ̂x(t) = σ̂x(0); σ̂y(t) = −σ̂z(0); σ̂z(t) = σ̂y(0).

e) (5 marks) Interpret your results: is the evolution consistent with the known properties of
waveplates?

The states linearly polarized at θ = π
4 and π

2 + θ = 3π
4 are unaffected by the waveplate. At

the same time, they are the eigenstates of σ̂x (and hence of the Hamiltonian), hence it is not
surprising that this operator does not evolve.

The operators σ̂z and σ̂y evolve into each other. Again, this is consistent with the property of
the quarter-wave plate at angle π

4 to interconvert between horizontal and vertical polarizations
(eigenstates of σ̂z) and circular polarizations (eigenstates of σ̂x).
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