University of Oxford

Department of Physics Quantum Optics graduate class

Michaelmas term test

November 30, 2021, 9:30-11:30

Problem 1. (50 marks)

The optical scheme shown below, with two symmetric beam splitters, is known as "quantum scissors".

a) (15 marks) The input state is $|\chi\rangle=\alpha|0\rangle+\beta|1\rangle$ in parts (a-c) and (e). Find the state of the optical modes 1, 2 and 3 prior to the measurement.

$$
\begin{aligned}
|\Psi\rangle_{123} & =\hat{U}_{13}\left(\hat{U}_{12}|0\rangle_{1} \otimes|1\rangle_{2}\right) \otimes(\alpha|0\rangle+\beta|1\rangle)_{3} \\
& =\frac{1}{\sqrt{2}} \hat{U}_{13}(|01\rangle-|10\rangle)_{12} \otimes(\alpha|0\rangle+\beta|1\rangle)_{3} \\
& =\frac{1}{\sqrt{2}} \hat{U}_{13}(\alpha|010\rangle-\alpha|100\rangle+\beta|011\rangle-\beta|101\rangle)_{123} \\
& =\frac{1}{2}(\sqrt{2} \alpha|010\rangle-\alpha|100\rangle-\alpha|001\rangle+\beta|011\rangle-\beta|110\rangle+\beta|200\rangle-\beta|002\rangle)_{123} .
\end{aligned}
$$

b) (5 marks) Find the state of mode 2 if the detector in mode 1 detects one photon, and the detector in mode 3 detects no photons. What is the probability p of this event?

$$
\left|\psi_{\text {out }}\right\rangle={ }_{13}\langle 10 \mid \Psi\rangle_{123}=-\frac{1}{2}(\alpha|0\rangle+\beta|1\rangle)_{2}
$$

Since $|\chi\rangle$ is normalized, $|\alpha|^{2}+|\beta|^{2}=1$, so the probability of the above state is $p=1 / 4$.
c) (5 marks) What quantum communication protocol does this scheme represent? Identify the location of the parties and other main elements of this protocol in the above scheme.
This is a teleportation protocol, with the input into mode 3 coming from Alice and the output of mode 2 going to Bob. The entangled resource $\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)_{12}$ is produced by the first beam splitter in modes 1 and 2 and the Bell measurement is implemented in modes 1 and 3 via the second beam splitter. For the latter, projecting onto $|10\rangle_{13}$ in the beam splitter output is equivalent to projecting onto the Bell state $\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)_{13}$ in its input (the beam splitter action is symmetric in the two directions).
d) (5 marks) What is the output if the input state is an arbitrary superposition $|\chi\rangle=\sum_{i=0}^{\infty} \psi_{n}|n\rangle$? Can you guess why the scheme is called "quantum scissors"?

Any term with $n \geq 2$ in $|\chi\rangle$ will produce at least two photons in the output of the second beam splitter, meaning that the amplitude of projection onto $|1\rangle 0$ is zero. Hence the output will be the same as in part (b), with $\alpha=\psi_{0}$ and $\beta=\psi_{1}$. "Quantum scirrors" will "cut off" all Fock terms above $n=1$ from the teleported state.
e) (20 marks) Repeat part (b) if the initial single photon in mode 2 is imperfect and produces a mixture $\hat{\rho}_{1}=\eta|1\rangle\langle 1|+(1-\eta)|0\rangle\langle 0|$. The input state is $|\chi\rangle=\alpha|0\rangle+\beta|1\rangle$.
For $|0\rangle$ input in mode 2, we have

$$
\begin{aligned}
|\Psi\rangle_{123} & =\hat{U}_{23}\left(\hat{U}_{12}|0\rangle_{1} \otimes|0\rangle_{2}\right) \otimes(\alpha|0\rangle+\beta|1\rangle)_{3} \\
& =\hat{U}_{23}|00\rangle_{12} \otimes(\alpha|0\rangle+\beta|1\rangle)_{3} \\
& =\hat{U}_{23}(\alpha|000\rangle+\beta|001\rangle)_{123} \\
& =\left(\alpha|000\rangle+\frac{1}{\sqrt{2}} \beta|001\rangle-\frac{1}{\sqrt{2}} \beta|100\rangle\right)_{123}
\end{aligned}
$$

and after the photon detection,

$$
\left|\psi_{\text {out }}^{\prime}\right\rangle={ }_{13}\langle 10 \mid \Psi\rangle_{123}=\frac{1}{\sqrt{2}} \beta|1\rangle_{2} .
$$

Since the input in mode 2 is $|1\rangle$ with probability η and $|0\rangle$ with probability $1-\eta$, the (unnormalized) output ensemble is

$$
\begin{aligned}
\hat{\rho} & =\eta\left|\psi_{\text {out }}\right\rangle\left\langle\psi_{\text {out }}\right|+(1-\eta)\left|\psi_{\text {out }}^{\prime}\right\rangle\left\langle\psi_{\text {out }}^{\prime}\right| \\
& =\left(\frac{\eta}{4}|\alpha|^{2}+\frac{1-\eta}{2}|\beta|^{2}\right)|0\rangle\langle 0|+\frac{\eta}{4} \alpha \beta^{*}|0\rangle\langle 1|+\frac{\eta}{4} \alpha^{*} \beta|1\rangle\langle 0|+\frac{\eta}{4}|\beta|^{2}|1\rangle\langle 1| .
\end{aligned}
$$

The probability is the sum of the diagonal elements,

$$
p=\frac{\eta}{4}+\frac{1-\eta}{2}|\beta|^{2} .
$$

You can use the beam splitter evolution operator $|U\rangle$ in the Fock basis as derived in class:

$$
\begin{aligned}
\hat{U}|00\rangle & =|00\rangle \\
\hat{U}|10\rangle & =\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle \\
\hat{U}|01\rangle & =\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle \\
\hat{U}|11\rangle & =-\frac{1}{\sqrt{2}}|20\rangle+\frac{1}{\sqrt{2}}|02\rangle
\end{aligned}
$$

where the operator of the first beam splitter acts on modes $(1,2)$ and the second one on modes $(1,3)$.

Problem 2. (50 marks) A general waveplate with its optical axis oriented at angle θ transforms the polarization state of a photon as follows:

$$
\begin{align*}
& \hat{U}|\theta\rangle=e^{i \Delta \varphi}|\theta\rangle \tag{1}\\
& \hat{U}\left|\frac{\pi}{2}+\theta\right\rangle=\left|\frac{\pi}{2}+\theta\right\rangle \tag{2}
\end{align*}
$$

where \hat{U} is the evolution operator and $\Delta \varphi$ is the difference of the phase shifts of the extraordinary $(|\theta\rangle)$ and ordinary $\left(\left|\frac{\pi}{2}+\theta\right\rangle\right)$ photons.
a) (5 marks) Write down \hat{U} explicitly in its eigenbasis.

$$
\hat{U}=e^{i \Delta \varphi}|\theta\rangle\langle\theta|+\left|\frac{\pi}{2}+\theta\right\rangle\left\langle\frac{\pi}{2}+\theta\right| .
$$

b) (5 marks) Suppose this evolution occurs under the action of a fictitious Hamiltonian \hat{H} for the time period t_{0}. Write down \hat{H} in its eigenbasis.
Since $\hat{U}=\exp \left(-\frac{i}{\hbar} \hat{H} t_{0}\right)$, we have $\hat{H}=\frac{\hbar \Delta \varphi}{t_{0}}|\theta\rangle\langle\theta|$.
c) (20 marks) Find the differential equations for the evolution of the three Pauli operators under this Hamiltonian in the Heisenberg picture.
Since $|\theta\rangle=\binom{\cos \theta}{\sin \theta} \equiv\binom{c}{s}$, we find

$$
\hat{H}=\left(\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right)=\frac{1}{2} \hat{\mathbf{1}}+\frac{c^{2}-s^{2}}{2} \hat{\sigma}_{z}+c s \hat{\sigma}_{x}
$$

Using $\left[\hat{\sigma}_{i}, \hat{\sigma}_{j}\right]=2 \varepsilon_{i j k} \hat{\sigma}_{k}$, we have

$$
\begin{aligned}
& \dot{\hat{\sigma}}_{x}=\frac{i}{\hbar}\left[\hat{H}, \hat{\sigma}_{x}\right]=-\left(c^{2}-s^{2}\right) \frac{\Delta \varphi}{t_{0}} \hat{\sigma}_{y} ; \\
& \dot{\hat{\sigma}}_{y}=\frac{i}{\hbar}\left[\hat{H}, \hat{\sigma}_{y}\right]=\left(c^{2}-s^{2}\right) \frac{\hbar \Delta \varphi}{t_{0}} \hat{\sigma}_{x}-2 c s \frac{\Delta \varphi}{t_{0}} \hat{\sigma}_{z} ; \\
& \dot{\hat{\sigma}}_{z}=\frac{i}{\hbar}\left[\hat{H}, \hat{\sigma}_{z}\right]=2 c s \frac{\Delta \varphi}{t_{0}} \hat{\sigma}_{y} .
\end{aligned}
$$

d) (15 marks) Specializing to a quarter-wave plate at $\theta=\frac{\pi}{4}$, solve these equations and find the corresponding evolution of the Pauli operators.
For $\theta=\frac{\pi}{4}$, we hace $c=s=\frac{1}{\sqrt{2}}$, hence

$$
\begin{aligned}
& \dot{\hat{\sigma}}_{x}=0 \\
& \dot{\hat{\sigma}}_{y}=-\frac{\Delta \varphi}{t_{0}} \hat{\sigma}_{z} \\
& \dot{\hat{\sigma}}_{z}=\frac{\Delta \varphi}{t_{0}} \hat{\sigma}_{y}
\end{aligned}
$$

The solution is

$$
\begin{aligned}
& \hat{\sigma}_{x}(t)=\hat{\sigma}_{x}(0) \\
& \hat{\sigma}_{y}(t)=\hat{\sigma}_{y}(0) \cos \frac{\Delta \varphi}{t_{0}} t-\hat{\sigma}_{z}(0) \sin \frac{\Delta \varphi}{t_{0}} t \\
& \hat{\sigma}_{z}(t)=\hat{\sigma}_{z}(0) \cos \frac{\Delta \varphi}{t_{0}} t+\hat{\sigma}_{y}(0) \sin \frac{\Delta \varphi}{t_{0}} t
\end{aligned}
$$

For a quarter-wave plate, $\Delta \varphi=\frac{\pi}{2}$, hence $\hat{\sigma}_{x}(t)=\hat{\sigma}_{x}(0) ; \hat{\sigma}_{y}(t)=-\hat{\sigma}_{z}(0) ; \hat{\sigma}_{z}(t)=\hat{\sigma}_{y}(0)$.
e) (5 marks) Interpret your results: is the evolution consistent with the known properties of waveplates?
The states linearly polarized at $\theta=\frac{\pi}{4}$ and $\frac{\pi}{2}+\theta=\frac{3 \pi}{4}$ are unaffected by the waveplate. At the same time, they are the eigenstates of $\hat{\sigma}_{x}$ (and hence of the Hamiltonian), hence it is not surprising that this operator does not evolve.
The operators $\hat{\sigma}_{z}$ and $\hat{\sigma}_{y}$ evolve into each other. Again, this is consistent with the property of the quarter-wave plate at angle $\frac{\pi}{4}$ to interconvert between horizontal and vertical polarizations (eigenstates of $\hat{\sigma}_{z}$) and circular polarizations (eigenstates of $\hat{\sigma}_{x}$).

