University of Calgary Fall semester 2008

PHYS 673: Quantum and Nonlinear Optics

Homework assignment 1

Due September 23, 2008

<u>Problem 1.1.</u> In class, we used the classical theory of dispersion to derive the susceptibility of a gas of linear oscillators. Verify the Kramers-Kronig relations for the linear and imaginary parts of this susceptibility. Near-resonance, narrow-resonance approximations can be used.

<u>Problem 1.2.</u> Use the classical theory of dispersion to calculate the index of absorption of a gas at wavelength $\lambda = 800$ nm with the resonance width $\gamma/2\pi = 6$ MHz and number density 10^{10} cm⁻³.

- a) Assume that the oscillators do not move.
- b) Take into account Doppler broadening. Assume room temperature. The mass of each oscillator is equal to that of a rubidium atom. **Hint:** because the natural oscillator's linewidth is much narrower than the Doppler width, the natural resonance of each atom can be assumed to be the delta-function.

<u>Problem 1.3.</u> Consider a slab of some substance of length L. The absorption index of the substance is equal to α at all frequencies except a narrow line of width γ at frequency ω_0 . The transparency window is of Lorentzian shape.

- a) Write the imaginary susceptibility χ'' and use the Kramers-Kronig relations to calculate the real susceptibility χ' .
- b) Calculate the group velocity v_{qr} on resonance. Show it to be subluminal.
- c) A laser pulse of frequency ω_0 and temporal width $\tau \approx 1/\gamma$ (so its spectrum just fits into the transparency window) propagates through the medium. Find the delay compared to propagation through vacuum. Express it in the units of τ .

<u>Problem 1.4.</u> Show that in an isotropic non-chiral medium, the only nonvanishing elements of the third order nonlinear susceptibility are $\chi_{iijj}^{(3)}$, $\chi_{ijij}^{(3)}$, and $\chi_{ijji}^{(3)}$ (where i, j are x, y, z). Show that each of these elements is the same for all i and j as long as $i \neq j$ (i.e., for example, $\chi_{xxyy}^{(3)} = \chi_{yyzz}^{(3)}$). Show that

$$\chi_{xxxx}^{(3)} = \chi_{xxyy}^{(3)} + \chi_{xyxy}^{(3)} + \chi_{xyyx}^{(3)}.$$

<u>Problem 1.5.</u> You need to generate second harmonic of continuous-wave laser light at wavelength $\lambda = 1064$ nm in a beta barium borate (BBO) crystal of length L = 5 mm cut for optimal phase matching. Use the data from Wikipedia to answer the following questions.

- a) At which angle to the optical axis should the beam propagate to achieve phase matching?
- b) Which wave (fundamental or second harmonic) is ordinary, which extraordinary?
- c) Find the FWHM of the phase matching band (in units of wavelength).
- d) Find the acceptance angle.
- e) Find the walk-off angle for both waves.
- f) The power of the fundamental beam is P = 100 mW. Estimate the power of generated second harmonic assuming optimal beam geometry.

<u>Problem 1.6.</u> You need to generate second harmonic of continuous-wave laser light at wavelength $\lambda = 1064$ nm in a periodically poled potassium titanyl phosphate (PPKTP) crystal of length L = 5 mm. Light propagates along the x axis and is polarized along the z axis. Find the necessary information about the crystal on the Internet and answer the following questions.

- a) What is the poling period required for phase matching?
- b) Find the FWHM of the phase matching band.
- c) The power of the fundamental beam is P = 100 mW. Find the power of generated second harmonic assuming optimal beam geometry.