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For all problems, it is allowed to use tables of Clebsch-Gordan coefficients (ClebschGordan function
in Mathematica) as well as the Wigner rotation matrix for j = 1 from the textbook (Sec. 3.5).

Problem 5.1. Calculate djm′m(β) =
〈
jm′

∣∣∣ e−iβĴy/~∣∣∣ jm〉 for j = 1/2 using the Wigner formula and

compare your result with the equation eiθ~v~̂σ = cos θ 1̂ + i sin θ ~v ~̂σ derived in class.

Problem 5.2. Alice has a spin-1 particle and Bob has a spin-1/2 particle. The added angular mo-
mentum of the two particles is in state |j = 1/2,m = 1/2〉.

a) What is the state of Bob’s particle if Alice’s particle is lost?

b) The field gradient in Alice’s Stern-Gerlach apparatus is along vector ~n that is at 45◦ between
the positive x and y axes. Alice performs a measurement and observes that the projection of
her particle’s spin onto ~n is +~. What state does this measurement prepare at Bob’s location?
What is the probability of this event?

The answers should be given in the eigenbasis of the angular momentum operator of Bob’s particle.

Problem 5.3. A spin-1 particle is in initial state |m1 = 1〉 and a spin-1/2 particle is in initial state

|m2 = −1/2〉. Interaction Hamiltonian Ĥ = γ
~̂
J1 · ~̂J2 is turned on at t = 0. Find the state of the two

particles in the {|m1,m2〉} basis as a function of time.

Problem 5.4. Angular momenta are added for three spin-1/2 particles with magnetic quantum num-
bers m1 = m2 = 1/2 and m3 = −1/2. This problem can be solved in two ways. If we first add the
momenta of particles 1 and 2, we obtain the state |j = 1,m = 1〉. Now adding the third particle and
using the appropriate Clebsch-Gordan coefficients, we obtain the state√
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On the other hand, if we first add the momenta of particles 1 and 3, we obtain the state
(|j = 1,m = 0〉+ |j = 0,m = 0〉)/

√
2, and adding particle 2 to this result, we have√
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Explain why these approaches produce different answers.
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Problem 5.5. We found in class that the infinitesimal rotation by angle ε around the z axis acting
on a position eigenstate transforms it as follows:

e−iεL̂z/~ |x, y, z〉 ≈ |x− εy, y + εx, z〉 ,

which in the spherical coordinates corresponds to

e−iεL̂z/~ |r, θ, φ〉 ≈ |r, θ, φ+ ε〉 ,

from which we found that the action of operator L̂z on the wavefunction ψ(r, θ, φ) = 〈r, θ, φ|ψ〉 of
an arbitrary state |ψ〉 is given by〈

r, θ, φ
∣∣∣ L̂z∣∣∣ ψ〉 = −i~ ∂

∂φ
〈r, θ, φ|ψ〉 .

Conduct a similar argument for L̂x and L̂y to show that〈
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and 〈
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Then show that〈
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