University of Calgary Fall semester 2014

PHYS 615: Advanced Quantum Mechanics I

Final examination

December 18, 2014, 15:30, 3 hours, EEEL 349

Open books. No electronic equipment allowed. Full credit = 100 points. Attempt all problems. Partial credit will be given.

Problem 1 (10 pts). Write the matrices of the observables associated with the x, y and z components of the spin for a spin-3/2 particle.

Problem 2 (25 pts). For a superposition of coherent states $|\psi\rangle = \mathcal{N}(|\alpha\rangle + |-\alpha\rangle)$, where α is real and positive and \mathcal{N} is the normalization factor:

- a) find \mathcal{N} ;
- b) find the mean and variance of the position and momentum observables;
- c) find the mean and variance of the energy observable;
- d) write the density operator in the position basis.

Problem 3 (15 pts). A von Neumann measurement of photon polarization state $|\psi\rangle = \alpha |H\rangle + \beta |V\rangle$ is performed in the diagonal basis.

- a) Write the joint state of the system and the apparatus after the measurement in the measurement basis.
- b) Write, in the canonical basis, the state of the system alone after the measurement.
- c) What are the probabilities of the measurement outcomes?

The amplitudes α and β can be assumed real.

Problem 4 (25 pts). Two electrons shared between Alice and Bob are initially in state

$$|\Psi\rangle = (|j=1, m=0\rangle + |j=1, m=1\rangle)/\sqrt{2}.$$

- a) Write the electron pair's state in the $|m_1, m_2\rangle$ basis.
- b) What is the mean value of the observable $\hat{\sigma}_x \otimes \hat{\sigma}_z$ in this state?
- c) What is the state of Bob's spin if Alice's electron is lost?
- d) Alice performs a Stern-Gerlach measurement on her electron with the magnetic field gradient oriented along the vector \hat{n} between the positive x and z semiaxes, at angle θ to the z axis. What are the probabilities of possible measurement outcomes and what state will be prepared at Bob's location in each case?
- e) Instead of the above, at time t = 0, a magnetic field of magnitude B along the z axis is turned on that affects only Alice's electron. What is the probability to find the pair in the singlet state $|j = 0, m = 0\rangle$ at time t?

Problem 5 (25 pts). Two optical modes, initially in the vacuum state, interact under the Hamiltonian $\hat{H} = \alpha(\hat{X}_1\hat{P}_2 + \hat{P}_1\hat{X}_2)$, with a real positive α .

- a) Write the differential equations for the evolution of observables $\hat{X}_{1,2}(t)$, $\hat{P}_{1,2}(t)$ in the Heisenberg picture.
- b) Solve these equations to express $\hat{X}_{1,2}(t), \hat{P}_{1,2}(t)$ through $\hat{X}_{1,2}(0), \hat{P}_{1,2}(0)$.
- c) Verify explicitly that the commutation relations between $\hat{X}_{1,2}(t)$, $\hat{P}_{1,2}(t)$ are consistent with the canonical. Write the uncertainty principle for those pairs of observables for which it applies.
- d) Find the variances of $\hat{X}_1(t) \pm \hat{X}_2(t)$ and $\hat{P}_1(t) \pm \hat{P}_2(t)$ and compare them with those at t = 0. What physical phenomenon does this calculation demonstrate?

<u>Useful relations</u>

Clebsch-Gordan coefficients for two spin-1/2 particles:

$$\begin{split} \langle m_1 &= -1/2, m_2 = -1/2 | j = 1, m = -1 \rangle &= 1; \\ \langle m_1 &= 1/2, m_2 = -1/2 | j = 0, m = 0 \rangle &= 1/\sqrt{2}; \\ \langle m_1 &= 1/2, m_2 = -1/2 | j = 1, m = 0 \rangle &= 1/\sqrt{2}; \\ \langle m_1 &= -1/2, m_2 = 1/2 | j = 0, m = 0 \rangle &= -1/\sqrt{2}; \\ \langle m_1 &= -1/2, m_2 = 1/2 | j = 1, m = 0 \rangle &= 1/\sqrt{2}; \\ \langle m_1 &= 1/2, m_2 = 1/2 | j = 1, m = 1 \rangle &= 1. \end{split}$$

The Hamiltonian for the electron spin in the magnetic field:

$$\hat{H} = g\mu_B \vec{B} \cdot \vec{\hat{S}},$$

where μ_B is the Bohr magneton.