University of Calgary Fall semester 2013

PHYS 615: Advanced Quantum Mechanics I

Homework assignment 1

Due Monday September 22, 2013

Problem 1.1. Consider a quarter-waveplate with its optical axis oriented at angle ϕ to horizontal.

- a) Find the operator associated that waveplate. Write it in the Dirac and matrix notations.
- b) Verify that this operator is unitary.
- c) Verify that, for $\phi = 45^{\circ}$, this operator turns horizontal and vertical polarizations into circular.
- d) A horizontally polarized photon enters the waveplate and then is subjected to a measurement in the canonical basis. Find and plot the detection probabilities as a function of ϕ .

Hint: the quarter-waveplate oriented horizontally is associated with operator $|H\rangle\langle H| + i |V\rangle\langle V|$.

<u>Problem 1.2.</u> The components of the spin operator \hat{L} of a spin-1 particle have the following matrices in the eigenbasis $\{|1\rangle, |0\rangle, |-1\rangle\}$ of \hat{L}_z :

$$\hat{L}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{L}_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}, \quad \hat{L}_z = \hbar \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

- a) Show that these operators are Hermitian (i.e. they can be interpreted as physical observables).
- b) Are these operators unitary?
- c) Find the eigenvalues and eigenstates of \hat{L}_x , \hat{L}_y , and \hat{L}_z .
- d) Find the commutation relations of these observables.
- e) The observable \hat{L}_x is measured in the state $|\psi_0\rangle = (3i|1\rangle + 4|0\rangle)/5$. What results can be obtained and with which probabilities?
- f) Find the expectation values and uncertainties of the measurements of \hat{L}_x and \hat{L}_y in the state $|\psi\rangle$.
- g) Verify that the uncertainty principle holds for the measurements in part (f).
- h) The particle initially (t = 0) in state $|-1\rangle$ is placed into a magnetic field \vec{B} oriented along the y axis, so the Hamiltonian $\hat{H} = -\mu \vec{L} \vec{B}$. Find the state of the system at an arbitrary time t using two methods: solving the differential equation for the state vector and calculating the evolution operator. What is the probability that the system will remain in its initial state at the moment $\omega t = \pi/2$? $\omega t = \pi$? $\omega t = 2\pi$ (where $\omega = \mu \hbar$)?
- i) Find the mean and uncertainty of the state's energy as a function of time.

<u>Problem 1.3.</u> Consider an operator \hat{A} that performs the following transformation.

$$|V\rangle \rightarrow \frac{|V\rangle + 3i|H\rangle}{\sqrt{10}};$$
 (1)

$$|+\rangle \rightarrow \frac{2+i}{\sqrt{5}}|-\rangle.$$
 (2)

- a) How is the horizontal polarization state mapped by \hat{A} ?
- b) Write the matrix of \hat{A} in the canonical basis.
- c) Determine how \hat{A} acts upon the circular polarization states.
- d) Using the previous result, find the matrix of \hat{A} in the circular polarization basis;
- e) Find the matrix of \hat{A} in the canonical basis from its matrix in the circular basis using the method of "inserting $\hat{1}$ ". Is your result consistent with that of part (b)?
- f) Find the traces of the matrices of \hat{A} in the canonical and circular bases. Are they identical?
- g) Express \hat{A} in the Dirac notation in terms of outer products of states $|H\rangle$ and $|V\rangle$;
- h) Is \hat{A} Hermitian? If not, what is its adjoint? Is \hat{A} unitary?

<u>Problem 1.4.</u> Consider an apparatus for measuring the photon polarization that has the following properties:

- whenever a linearly polarized photon at angle θ enters the apparatus, it displays "2";
- whenever a linearly polarized photon at angle $\pi/2 + \theta$ enters the apparatus, it displays "3";

Find the matrices of \hat{A} in its eigenbasis and in the $\{|H\rangle, |V\rangle\}$ basis.