
Appendix S2
Solutions to Chapter 2 exercises

Solution to Exercise 2.1. Let us choose an arbitrary |a〉 ∈VA and consider the sum |Ψ〉= |a〉⊗|b〉+ |zero〉VA
⊗

|b〉. According to Eq. (2.3a), we find |Ψ〉=
(
|a〉+ |zero〉VA

)
⊗|b〉= |a〉⊗|b〉. In other words, adding |zero〉VA

⊗
|b〉 to an element of VA⊗VB did not change this element. According to Ex. A.2(b), we find that |zero〉VA

⊗|b〉
must be the zero element VA⊗VB.

The second identity is proven in a similar fashion.

Solution to Exercise 2.2. For simplicity, let us consider the polarization Hilbert space of two photons and show
that B = {|H〉⊗ |H〉 , |H〉⊗ |V 〉 , |V 〉⊗ |H〉 , |V 〉⊗ |V 〉} is a basis.

First, we prove that B is a spanning set. Consider an arbitrary separable vector |a〉⊗ |b〉 of VA⊗VB. Decom-
posing |a〉 and |b〉 into the canonical bases of their home Hilbert spaces,

|a〉= aH |H〉+aV |V 〉 ;

|b〉= bH |H〉+bV |V 〉 ,

we use Eqs. (2.2) and (2.3) to write

|a〉⊗ |b〉= aHbH |H〉⊗ |H〉+aHbV |H〉⊗ |V 〉+aV bH |V 〉⊗ |H〉+aV bV |V 〉⊗ |V 〉 . (S2.1)

In other words, any separable element of VA⊗VB can be written as a linear combination of elements of B.
This property is readily generalized to entangled vectors because any entangled vector is a linear combination of
separable vectors.

Second, we need to prove that B is linearly independent. This follows from the fact that all elements of B
are orthogonal to each other [see Eq. (2.4)] and the fact that any set of mutually orthogonal vectors is linearly
independent (Ex. A.17).

Solution to Exercise 2.3. Because |30◦〉=
√

3/2 |H〉+1/2 |V 〉 ; |R〉= 1/
√

2 |H〉+ i/
√

2 |V 〉, we have

S23
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|30◦〉⊗ |R〉=
√

3
2
√

2
|HH〉+

√
3i

2
√

2
|HV 〉+ 1

2
√

2
|V H〉+ i

2
√

2
|VV 〉 '


√

3/2
√

2√
3i/2
√

2
1/2
√

2
i/2
√

2

 .

State |30◦〉⊗ |R〉 is separable.

Solution to Exercise 2.4.

a) First let us present both states in the canonical basis

|Π〉=5 |HH〉+6i
1√
2
(|H〉+ i |V 〉) 1√

2
(|H〉− |V 〉)

=5 |HH〉+3i(|HH〉− |HV 〉+ i |V H〉− i |VV 〉)
=(5+3i) |HH〉−3i |HV 〉−3 |V H〉+3 |VV 〉 ;

|Ω〉=2
1√
2
(|H〉+ |V 〉) 1√

2
(|H〉− i |V 〉)+3

1√
2
(|H〉+ i |V 〉) 1√

2
(|H〉+ i |V 〉)

= |HH〉− i |HV 〉+ |V H〉− i |VV 〉+ 3
2
(|HH〉+ i |HV 〉+ i |V H〉− |VV 〉)

=
5
2
|HH〉+ i

2
|HV 〉+

(
1+

3i
2

)
|V H〉+

(
−3

2
− i
)
|VV 〉 .

Hence

〈Π |Ω〉= (5−3i)
5
2
+3i

i
2
−3
(

1+
3i
2

)
+3
(
−3

2
− i
)
=

7
2
−15i.

b) Because |Π〉 and |Ω〉 are both separable, we have

〈Π |Ω〉=− i(2〈H|− i〈V |)(2i |H〉−3i |V 〉)× (〈H|− i〈V |)(|H〉+ |V 〉)/2
=− i[2× (2i)+(−i)× (−3i)][1×1+(−i)×1]/2
=−i(−3+4i)(1− i)/2 = (7− i)/2.

Solution to Exercise 2.6. Consider, for example, |Φ+〉. Suppose this state can be written as a product∣∣Φ+
〉
= |a〉A⊗|b〉B , (S2.2)

where |a〉 and |b〉 are some states in VA and VB, respectively. These states can be decomposed into the canonical
bases of their respective spaces:

|a〉= aH |H〉+aV |V 〉 ;

|b〉= bH |H〉+bV |V 〉 .

Substituting these decompositions into Eq. (S2.2), comparing the result with the definition (2.5c) of |Φ+〉, and
using the uniqueness of the decomposition of a vector into a basis, we find:
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aHbH = 1/

√
2

aHbV = 0
aV bH = 0
aV bV = 1/

√
2.

(S2.3)

From the second equation in the above system, we find that either aH = 0 or bV = 0. Therefore, either aHbH or
aV bV must vanish, which contradicts either the first or the fourth equations of system (S2.3).

The proof for other Bell states runs similarly.

Solution to Exercise 2.7. The Bell states comprise a spanning set because the four canonical basis elements can
be expressed through these states:

|HH〉 =
(∣∣Φ+

〉
+
∣∣Φ−〉)/√2; (S2.4a)

|VV 〉 =
(∣∣Φ+

〉
−
∣∣Φ−〉)/√2; (S2.4b)

|HV 〉 =
(∣∣Ψ+

〉
+
∣∣Ψ−〉)/√2; (S2.4c)

|V H〉 =
(∣∣Ψ+

〉
−
∣∣Ψ−〉)/√2. (S2.4d)

Because the dimension of this tensor product space is 4, and according to Ex. A.7(b), the four Bell states form a
basis. The orthonormality of this basis can be verified by direct calculation, i.e.:〈

Φ
+
∣∣ Φ

+
〉
= (〈HH| HH〉+ 〈HH|VV 〉+ 〈VV | HH〉+ 〈VV |VV 〉)/2 = (1+0+0+1)/2 = 1;〈

Φ
+
∣∣ Φ
−〉 = (〈HH| HH〉−〈HH|VV 〉+ 〈VV | HH〉−〈VV |VV 〉)/2 = (1−0+0−1)/2 = 0

and so on.

Solution to Exercise 2.8. Using |θ〉 = cosθ |H〉+ sinθ |V 〉 and
∣∣π

2 +θ
〉
= −sinθ |H〉+ cosθ |V 〉 (see Table

1.1), we find

1√
2

[
|θ〉⊗

∣∣∣π
2
+θ

〉
−
∣∣∣π

2
+θ

〉
⊗|θ〉

]
=

1√
2
[(cosθ |H〉+ sinθ |V 〉)⊗ (−sinθ |H〉+ cosθ |V 〉)− (−sinθ |H〉+ cosθ |V 〉)⊗ (cosθ |H〉+ sinθ |V 〉)]

=
1√
2

[
(cos2

θ + sin2
θ) |HV 〉− (cos2

θ + sin2
θ) |V H〉

]
=
∣∣Ψ−〉 .

Solution to Exercise 2.9.

a) The probability of detecting the state |Ψ〉= |R〉 |−30◦〉 is the square absolute value of the overlap

pr|Ψ〉 = |
〈
Ψ
−∣∣Ψ〉 |2 = 1

2
|〈HV | R,−30◦〉−〈V H| R,−30◦〉|2

=
1
2
|〈H| R〉〈V | −30◦〉−〈V | R〉〈H| −30◦〉|2 = 1

2

∣∣∣∣∣ 1√
2
−1
2
− i√

2

√
3

2

∣∣∣∣∣
2

=
1
4
.
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b) Similarly,

pr|Ψ〉 =
∣∣∣∣ 1
3
√

2
(〈HV |− 〈V H|)(|HV 〉+2 |V H〉+2 |VV 〉)

∣∣∣∣2 = 1
18
|1−2|2 = 1

18
.

Solution to Exercise 2.10.

a) For the canonical basis, we write

prHH = | 〈HH|Ψ〉 |2 = 0; (S2.5)

prHV = | 〈HV |Ψ〉 |2 = 1
2

;

prV H = | 〈V H|Ψ〉 |2 = 1
2

;

prVV = | 〈VV |Ψ〉 |2 = 0.

To find the probabilities for the diagonal basis measurement, let us decompose |Ψ〉 in that basis. Knowing
that |H〉= (|+〉+ |−〉)/

√
2, |V 〉= (|+〉− |−〉)/

√
2, we write

|Ψ〉= |++〉− |+−〉+ |−+〉− |−−〉
2
√

2
+ eiφ |++〉+ |+−〉−|−+〉− |−−〉

2
√

2

=
(1+ eiφ ) |++〉+(−1+ eiφ ) |+−〉+(1− eiφ ) |−+〉+(−1− eiφ ) |−−〉

2
√

2

=eiφ/2 cos(φ/2) |++〉+ isin(φ/2) |+−〉− isin(φ/2) |−+〉− cos(φ/2) |−−〉√
2

.

and hence

pr++ = pr−− = cos2(φ/2)/2;

pr+− = pr−+ = sin2(φ/2)/2.

b) The state |Ψ+〉 corresponds to the case φ = 0, state |Ψ−〉 to φ = π . They cannot be distinguished in the
canonical basis because both of them give the same probabilities (S2.5). But in the diagonal basis, the states
behave differently: for the state |Ψ+〉, projections onto |++〉 and |−−〉 occur with probabilities 1/2 each,
while projections onto |+−〉 and |−+〉 do not occur, while state |Ψ−〉 only projects onto |+−〉 and |−+〉
but not onto |++〉 and |−−〉. Hence a measurement in the diagonal basis will immediately distinguish these
two states.

Solution to Exercise 2.11. The measurement procedure is complicated because the measurement basis
{|H−〉 , |H+〉 , |V R〉 , |V L〉} cannot be written as a set of tensor products of elements of Alice’s and Bob’s local
bases. One way to address this complication would be as follows.

• First, Alice measures her photon in the canonical basis and communicates the result to Bob by a classical
channel.
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• Once Bob hears from Alice, he sets his measurement basis to diagonal if Alice observed |H〉 and circular if
Alice observed |V 〉. Then he measures his photon in this chosen basis.

Solution to Exercise 2.12. For each matrix element of Â⊗ B̂, we can write

(Â⊗ B̂)i ji′ j′ =
〈
viw j

∣∣ Â⊗ B̂
∣∣vi′w j′

〉
=[〈vi|⊗

〈
w j
∣∣][(Â |vi′〉

)
⊗
(
B̂
∣∣w j′

〉)]
=
(
〈vi| Â |vi′〉

) (〈
w j
∣∣ B̂ ∣∣w j′

〉)
=Aii′B j j′ .

In the second equality above, we used the definition of the tensor product operator; in the third one, Eq. (2.4).

Solution to Exercise 2.13. Let us write the operator σ̂x ⊗ σ̂y in the matrix form in the canonical basis
{|HH〉 , |HV 〉 , |V H〉 , |VV 〉}. Using Eq. (2.8), we have

σ̂x⊗ σ̂y '


(σx)HH(σy)HH (σx)HH(σy)HV (σx)HV (σy)HH (σx)HV (σy)HV
(σx)HH(σy)V H (σx)HH(σy)VV (σx)HV (σy)V H (σx)HV (σy)VV
(σx)V H(σy)HH (σx)V H(σy)HV (σx)VV (σy)HH (σx)VV (σy)HV
(σx)V H(σy)V H (σx)V H(σy)VV (σx)VV (σy)V H (σx)VV (σy)VV



=


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 .

Further,

∣∣Ψ−〉' 1√
2


0
1
−1
0

 .

For the expectation value, we find

〈
σ̂x⊗ σ̂y

〉
=
〈
Ψ
−∣∣ σ̂x⊗ σ̂y

∣∣Ψ−〉' 1
2
(

0 1 −1 0
)

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0




0
1
−1
0

= 0

The uncertainty can be found via Eq. (B.3). One could perform a full matrix calculation again, but perhaps it
is easier to notice that the square of any Pauli matrix is the identity operator, and thus〈

Ψ
−∣∣(σ̂x⊗ σ̂y)

2 ∣∣Ψ−〉= 〈Ψ−∣∣ 1̂ ∣∣Ψ−〉= 〈Ψ−∣∣Ψ−〉= 1.

The mean square uncertainty hence equals〈
∆(σ̂x⊗ σ̂y)

2〉= 〈(σ̂x⊗ σ̂y)
2〉−〈σ̂x⊗ σ̂y

〉2
= 1−0 = 1.
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Solution to Exercise 2.15. We choose a random separable state |ab〉 ∈ VA⊗VB and apply the definition of the
operator tensor product:

(Â1Â2)⊗ (B̂1B̂2) |a〉 |b〉 = Â1Â2 |a〉⊗ B̂1B̂2 |b〉= Â1
(
Â2 |a〉

)
⊗ B̂1

(
B̂2 |b〉

)
=
(
Â1⊗ B̂1

)(
Â2 |a〉⊗ B̂2 |b〉

)
=
(
Â1⊗ B̂1

)(
Â2⊗ B̂2

)
|a〉 |b〉 .

We see that the operators Â1Â2⊗ B̂1B̂2 and
(
Â1⊗ B̂1

)(
Â2⊗ B̂2

)
act on each separable in VA⊗VB state in the

same way. Because these are linear operators, the same applies to entangled states, which are linear combinations
of separable states. This means that the two operators are identical.

Solution to Exercise 2.17. For arbitrary |a〉 ∈VA and |b〉 ∈VB, we use again the definition of the tensor product
operator to write

(Â⊗ B̂) |ab〉= Â |a〉⊗ B̂ |b〉
=
(
|a1〉〈a2| a〉

)
⊗
(
|b1〉〈b2| b〉

)
= |a1b1〉〈a2| a〉〈b2| b〉
(2.4)
= |a1b1〉〈a2b2| ab〉
=
(
|a1b1〉〈a2b2|

)(
|ab〉

)
.

We see that the operators in the left- and right-hand sides of Eq. (2.9) map any separable state in the same way.
It follows that the two operators are identical.

Solution to Exercise 2.18. Suppose cloning is possible. That is, there exists a linear operator Û that performs
cloning of any state |a〉 in accordance with Eq. (2.10). Applying that equation to two orthogonal states |a1〉 and
|a2〉 and their linear superposition to cloning, we would obtain

Û |a1〉⊗ |0〉 = |a1〉⊗ |a1〉 (S2.6)
Û |a2〉⊗ |0〉 = |a2〉⊗ |a2〉 (S2.7)

Û
|a1〉+ |a2〉√

2
⊗|0〉 = |a1〉+ |a2〉√

2
⊗ |a1〉+ |a2〉√

2
. (S2.8)

On the other hand, adding Eqs. (S2.6) and (S2.7) together, and using the linearity of Û , we find

Û
|a1〉+ |a2〉√

2
⊗|0〉= 1√

2
(Û |a1〉⊗ |0〉+Û |a2〉⊗ |0〉) =

1√
2
(|a1〉⊗ |a1〉+ |a2〉⊗ |a2〉),

which is inconsistent with Eq. (S2.8).

Solution to Exercise 2.19. By definition, if a tensor product operator Â⊗ B̂ acts on a separable state |ab〉, it will
generate the state Â |a〉⊗ B̂ |b〉. Its adjoint (see Defn. A.21) must therefore satisfy

Adjoint
(
Â |a〉⊗ B̂ |b〉

)
= Adjoint

[
(Â⊗ B̂) |ab〉

]
= 〈ab|

(
Â⊗ B̂

)†
. (S2.9)

But, according to the definition (2.11), the adjoint of the tensor product state is the state
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Adjoint
(
Â |a〉⊗ B̂ |b〉

)
= Adjoint(Â |a〉)⊗Adjoint(B̂ |b〉) = 〈a| Â†⊗〈b| B̂†. (S2.10)

Comparing the last two equations, we obtain the required identity.

Solution to Exercise 2.20.

a) If the operators Â in VA and B̂ in VB are Hermitian, their matrices satisfy Aii′ = A∗i′i and Bii′ = B∗i′i. Then,
according to the result of Ex. 2.12,

(Â⊗ B̂)∗i′ j′i j = A∗i′iB
∗
j′ j = Aii′B j j′ = (Â⊗ B̂)i ji′ j′ .

When one transposes and conjugates the matrix of (Â⊗ B̂), one obtains the same matrix, which is the
signature of a Hermitian operator (Ex. A.53).

b) If operator Â in VA is unitary, it maps an orthonormal basis {|vi〉} onto another orthonormal basis {|v′i〉} (see
Ex. A.81). Similarly, a unitary operator B̂ in VB transforms between orthonormal bases {|wi〉} and {|w′i〉}.
The tensor product of Â and B̂ transforms between {

∣∣viw j
〉
} and {

∣∣∣v′iw′j〉}, which are both orthonormal
bases. An operator with such a property must be unitary.

Solution to Exercise 2.21. A local operator is a particular case of a tensor product operator, which, according to
Ex. 2.16, cannot transform a separable state into an entangled one.

Neither is a reverse operation possible. This is because any unitary operator is invertible. If there existed a
unitary operator enacting such a transformation, an inverse of that operator would transform a separable state
into an entangled one, and this is not possible.

Solution to Exercise 2.22.(
Â⊗ 1̂

)
|ab〉 (2.7)

=
(
Â |a〉

)
⊗
(
1̂ |b〉

)
=
(
a |a〉

)
⊗|b〉 (2.2)

= a |ab〉 .

Solution to Exercise 2.23.

a) σ̂z⊗ σ̂z |Φ+〉= |Φ+〉, but σ̂z,Alice |Φ+〉= σ̂z,Bob |Φ+〉= |Φ−〉.
b) Since Â and B̂ are Hermitian, they have spectral decompositions Â = ∑i ai |vi〉〈vi| and B̂ = ∑ j b j

∣∣w j
〉〈

w j
∣∣,

where {|vi〉} and {
∣∣w j
〉
} are orthonormal bases in Alice’s and Bob’s spaces, respectively. Accordingly,

Â⊗ B̂ = ∑
i j

aib j
∣∣viw j

〉〈
viw j

∣∣ ,
with {

∣∣viw j
〉
} being an orthonormal basis in V⊗W. As per Ex. A.66, |Ψ〉 being an eigenstate of Â⊗ B̂ with

eigenvalue x means that it can be written as a linear combination of only those basis elements
∣∣viw j

〉
for

which
Â⊗ B̂

∣∣viw j
〉
= x
∣∣viw j

〉
. (S2.11)

This means that, if measured in basis {|vi〉⊗
∣∣w j
〉
}, state |Ψ〉 will project onto one of these basis elements.

Alice’s measuring Â and Bob’s measuring B̂ does constitute a joint measurement of |Ψ〉 in basis {
∣∣viw j

〉
}.

This measurement will therefore yield a pair of vectors |vi〉⊗
∣∣w j
〉

for which Eq. (S2.11) holds. But we also
have
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Â⊗ B̂
∣∣viw j

〉
= (Â |vi〉)⊗ (B̂

∣∣w j
〉
) = aib j

∣∣viw j
〉
, (S2.12)

where ai and b j are the observable values associated with |vi〉 and
∣∣w j
〉
. Comparing Eqs. (S2.11) and (S2.12),

we find aib j = x.

Solution to Exercise 2.24.

a)

(σ̂z)A

∣∣Ψ−〉= (|H〉〈H|− |V 〉〈V |)A
1√
2
(|HV 〉− |V H〉) = 1√

2
(|HV 〉+ |V H〉) =

∣∣Ψ+
〉

;

b)

(σ̂x)A

∣∣Ψ−〉= (|H〉〈V |+ |V 〉〈H|)A
1√
2
(|HV 〉− |V H〉) = 1√

2
(|VV 〉− |HH〉) =−

∣∣Φ−〉 ;

c)

(σ̂y)A

∣∣Ψ−〉= (−i |H〉〈V |+ i |V 〉〈H|)A
1√
2
(|HV 〉− |V H〉) = 1√

2
(i |VV 〉+ i |HH〉) = i

∣∣Φ+
〉
.

Solution to Exercise 2.25.

a) If |ψA,B(t)〉 are solutions of the Schrödinger equation in their respective spaces:

d
dt
|ψA,B(t)〉=−

i
h̄

ĤA,B |ψA,B(t)〉

then for their tensor product we have

d
dt
|Ψ(t)〉= d

dt
[|ψA(t)〉⊗ |ψB(t)〉]

= |ψ̇A(t)〉⊗ |ψB(t)〉+ |ψA(t)〉⊗ |ψ̇B(t)〉

=

[
− i

h̄
ĤA |ψA(t)〉

]
⊗|ψB(t)〉+ |ψA(t)〉⊗

[
− i

h̄
ĤB |ψB(t)〉

]
=− i

h̄
(ĤA + ĤB)(|ψA(t)〉⊗ |ψB(t)〉)

=− i
h̄

Ĥ |Ψ(t)〉 .

b)

Ĥ |Ψ〉= (ĤA + ĤB)(|ψA〉⊗ |ψB〉)
= ĤA |ψA〉⊗ |ψB〉+ ĤB |ψA〉⊗ |ψB〉
= (ĤA |ψA〉)⊗|ψB〉+ |ψA〉⊗ (ĤB |ψB〉)
= (EA |ψA〉)⊗|ψB〉+ |ψA〉⊗ (EB |ψB〉)
= (EA +EB)(|ψA〉⊗ |ψB〉)
= E |Ψ〉 .
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c) Since the eigenstates of the local Hamiltonians ĤA,B form orthonormal bases (Ex. A.60), tensor products
of these eigenstates form an orthonormal basis in the tensor product Hilbert space VA⊗VB (Ex. 2.2). Any
eigenstate |ΨE〉 of Ĥ with energy E can be decomposed into that basis.
Now suppose the decomposition contains a term |ψA〉⊗ |ψB〉 with the corresponding energy EA +EB 6= E.
Then, as we found in part (b), this term is also an eigenstate of the full bipartite Hamiltoninan with an
eigenvalue that is unequal to E. But it follows from the spectral theorem (Ex. A.60) that an observable’s
eigenstates corresponding to different eigenvalues are orthogonal to each other. This means that the term
|ψA〉⊗ |ψB〉 is orthogonal to |ΨE〉. But the decomposition of a vector into a basis cannot contain terms that
are orthogonal to that state. We have arrived at a contradiction.

Solution to Exercise 2.26. According to Ex. 2.8, state |Ψ−〉 can be written as∣∣Ψ−〉= 1√
2

(
|θ〉⊗

∣∣∣π
2
+θ

〉
−
∣∣∣π

2
+θ

〉
⊗|θ〉

)
.

This expression implies that, whenever Alice has a photon in the state |θ〉, Bob’s photon is in the state
∣∣π

2 +θ
〉
.

Since both terms have amplitude 1/
√

2, the corresponding probabilities are 1/2.

Solution to Exercise 2.27. Since |H〉= (|+〉+ |−〉)/
√

2 and |V 〉= (|+〉− |−〉)/
√

2, we have

|Ψ〉= 1
3
(|HH〉−2 |HV 〉+2 |VV 〉)

=
1

3
√

2
[(|+〉+ |−〉)⊗|H〉−2(|+〉+ |−〉)⊗|V 〉+2(|+〉− |−〉)⊗|V 〉]

=
1

3
√

2
[|+〉⊗ |H〉+ |−〉⊗ (|H〉−4 |V 〉)],

which is the same as Eq. (2.13).

Solution to Exercise 2.28. According to Eq. (2.16),

∑
i

1/N 2
i = ∑

i j
|Ψi j|2 = 1.

In the last equality, we used the fact that the state |Ψ〉 is also normalized.

Solution to Exercise 2.29.

a) We can rewrite the state in question as

|Ψ〉= N
1√
2
[(|H〉+ i |V 〉)⊗|V 〉+ |H〉⊗ (|H〉+ |V 〉)]

= N
1√
2
[|HH〉+2 |HV 〉+ i |VV 〉].

Accordingly, 〈Ψ |Ψ〉= 3N 2, so N = 1/
√

3.
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b) In order to rewrite state |Ψ〉 in the form of Eq. (2.15), we group the terms associated with Alice’s horizontal
and vertical polarizations and re-normalize each term:

|Ψ〉= 1√
6
[|H〉⊗ (|H〉+2 |V 〉)+ i |V 〉⊗ |V 〉]

=

√
5
6
|H〉⊗ |H〉+2 |V 〉√

5
+ i

√
1
6
|V 〉⊗ |V 〉 .

c) It follows from the above result that Alice will detect |H〉 with the probability prH = 5
6 , in which case the

state prepared with Bob will be |H〉+2|V 〉√
5

, and Alice will detect |V 〉 with the probability prV = 1
6 , in which

case the state prepared with Bob will be |V 〉.

Solution to Exercise 2.30.

〈ψBob|Ω〉 = (2〈H|− i〈V |)Bob(2 |HH〉+3 |HV 〉+4 |V H〉)
= 2 |H〉Alice (2〈H|− i〈V |)Bob |H〉Bob

+ 3 |H〉Alice (2〈H|− i〈V |)Bob |V 〉Bob

+ 4 |V 〉Alice (2〈H|− i〈V |)Bob |H〉Bob

= (4 |H〉−3i |H〉+8 |V 〉)Alice = [(4−3i) |H〉+8 |V 〉]Alice;

〈Π | ψAlice〉 = (2〈H|− i〈V |)Alice⊗ (2 |H〉+ i |V 〉)Alice(−i〈H|− 〈V |)Bob

= [(2〈H|− i〈V |)(2 |H〉+ i |V 〉)]Alice (−i〈H|− 〈V |)Bob

= 5(−i〈H|− 〈V |)Bob.

Mind the complex conjugation when converting a ket to a bra.

Solution to Exercise 2.31. Let us decompose |a〉 and |b〉 in their respective bases:

|a〉 = ∑
i

ai |vi〉 ;

|b〉 = ∑
j

b j
∣∣w j
〉
.

Then |ab〉= ∑i, j aib j
∣∣viw j

〉
. Applying the definition (2.17a) of the partial inner product, we have〈

a′
∣∣Ψ〉 = ∑

i j
aib j

〈
a′
∣∣ vi
〉∣∣w j

〉
(S2.13)

= ∑
i

ai
〈
a′
∣∣ vi
〉
×∑

j
b j
∣∣w j
〉

(S2.14)

=
〈
a′
∣∣ a
〉
|b〉 (S2.15)

Solution to Exercise 2.32. Let |Ψ〉= ∑i jΨi j |vi〉
∣∣w j
〉
. Then, according to the definition (2.17a),
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〈b| 〈a|Ψ〉= 〈b|
(

∑
i j

Ψi j 〈a| vi〉
∣∣w j
〉)

= ∑
i j

Ψi j 〈a| vi〉
〈
b
∣∣ w j

〉
;

〈a| 〈b|Ψ〉= 〈a|
(

∑
i j

Ψi j |vi〉
〈
b
∣∣ w j

〉)
= ∑

i j
Ψi j 〈a| vi〉

〈
b
∣∣ w j

〉
;

〈ab|Ψ〉= 〈ab|
(

∑
i j

Ψi j
∣∣viw j

〉)
= ∑

i j
Ψi j 〈a| vi〉

〈
b
∣∣ w j

〉
,

where the last equation is obtained from the definition of the inner product in a tensor product space.

Solution to Exercise 2.33. We use λi j =
〈
viw j

∣∣Ψ〉 and µkl =
〈
v′kw′l

∣∣Ψ〉 as well as the resolution of the iden-
tity (Sec. A.6.3) to transform the left-hand side of Eq. (2.21). Specifically, we insert two identity operators,
∑k
∣∣v′k〉〈v′k∣∣ and ∑l

∣∣w′l〉〈w′l∣∣.
∑
i j

Ψi j 〈a| vi〉
∣∣w j
〉
= ∑

i j

〈
viw j

∣∣Ψ〉〈a| vi〉
∣∣w j
〉

= ∑
i jkl

〈
viw j

∣∣Ψ〉〈a∣∣ v′k
〉〈

v′k
∣∣ vi
〉∣∣w′l〉〈w′l∣∣ w j

〉
= ∑

i jkl

〈
viw j

∣∣Ψ〉〈a∣∣ v′k
〉〈

v′kw′l
∣∣ viw j

〉∣∣w′l〉
= ∑

kl

〈
v′kw′l

∣∣(∑
i j

∣∣viw j
〉〈

viw j
∣∣) |Ψ〉〈a∣∣ v′k

〉∣∣w′l〉
= ∑

kl

〈
v′kw′l

∣∣Ψ〉〈a∣∣ v′k
〉∣∣w′l〉= ∑

kl
Ψ
′

kl
〈
a
∣∣ v′k
〉∣∣w′l〉

Solution to Exercise 2.34.

a) Taking the partial inner product of both sides of Eq. (2.15) with an arbitrary element
〈
v j
∣∣ of Alice’s mea-

surement basis, we find

A
〈
v j
∣∣Ψ〉 (2.18)

= ∑
i

1
Ni

〈
v j
∣∣ vi
〉
⊗|bi〉=

1
N j

∣∣b j
〉

b) This follows from the previous result and the fact that
∣∣b j
〉

is normalized.

Solution to Exercise 2.35. Since |Ψ〉= 1√
3
(|RV 〉+ |H+〉), we find

A 〈H|Ψ〉=
1√
3
(〈H| R〉 |V 〉+ 〈H| H〉 |+〉) = 1√

3
(

1√
2
|V 〉+ |+〉) = 1√

6
(2 |V 〉+ |H〉);

A 〈V |Ψ〉=
1√
3
(〈V | R〉 |V 〉+ 〈V | H〉 |+〉) = 1√

6
|V 〉 .

These are the (unnormalized) states in which Alice’s measurement prepares Bob’s photon. The probabilities are
the squared norms of these states:
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prA,H =

∥∥∥∥ 1√
6
(2 |V 〉+ |H〉)

∥∥∥∥= 5
6

; prA,V =

∥∥∥∥ 1√
6
(|V 〉+ |H〉)

∥∥∥∥= 1
6
.

Solution to Exercise 2.36. I will show the proof for the Bell state |Φ+〉. Let the first element in Alice’s orthonor-
mal basis be given by |v1〉= a |H〉+b |V 〉, where a and b are arbitrary complex numbers such that |a|2+ |b|2 = 1.
Then

A
〈
v1
∣∣ Φ

+
〉
=

1√
2
(a∗ 〈H|+b∗ 〈V |)(|HH〉+ |VV 〉) = 1√

2
(a∗ |H〉+b∗ |V 〉)

and thus
pr1 =

1
2
(a〈H|+b〈V |)(a∗ |H〉+b∗ |V 〉) = 1

2
(|a|2 + |b|2) = 1

2
.

Then the probability to observe the other element of Alice’s basis must be pr2 = 1− 1
2 = 1

2 . The argument for
the other Bell states is similar.

Solution to Exercise 2.38. By analogy to Ex. 2.8 we notice that the state |Ψ−〉 can be expressed as∣∣Ψ−〉= 1√
2

(∣∣H̃Ṽ
〉
−
∣∣Ṽ H̃

〉)
, (S2.16)

where the states
∣∣H̃〉 = α |H〉+ β |V 〉 and

∣∣Ṽ〉 = −β ∗ |H〉+α∗ |V 〉 form an orthonormal basis and
∣∣H̃〉 is the

state Alice desires to prepare at Bob’s location. From Eq. (S2.16) we find that Alice should measure in the basis
{
∣∣H̃〉 , ∣∣Ṽ〉}. The remote state preparation of

∣∣H̃〉 occurs if Alice detects
∣∣Ṽ〉, which happens with a probability

of 1/2 as per Ex. 2.36.

Solution to Exercise 2.39. As we know from Ex. 2.26, Alice, when measuring in the basis {|θ〉 ,
∣∣π

2 +θ
〉
}, will

observe either result with probability prAlice observes |θ〉 = prAlice observes | π2 +θ〉 = 1/2.

Suppose Alice observes |θ〉. Bob’s state will then project onto
∣∣π

2 +θ
〉
. Conditioned on this event, Bob, who

measures in the canonical basis, will have the following probabilities:

prBob observes |H〉 | Alice observes |θ〉 =
∣∣∣〈H

∣∣∣ π

2
+θ

〉∣∣∣2 = sin2
θ ;

prBob observes |V 〉 | Alice observes |θ〉 =
∣∣∣〈V

∣∣∣ π

2
+θ

〉∣∣∣2 = cos2
θ .

Similarly, if Alice observes
∣∣π

2 +θ
〉
, Bob obtains |θ〉 so the conditional probabilities are

prBob observes |H〉 | Alice observes | π2 +θ〉 = | 〈H| θ〉 |
2 = cos2

θ ;

prBob observes |V 〉 | Alice observes | π2 +θ〉 = | 〈V | θ〉 |
2 = sin2

θ .

To find the overall probability for Bob to observe H, we must use rule (B.6) for conditional probabilities:



S2 Solutions to Chapter 2 exercises S35

prBob observes |H〉 =prBob observes |H〉 | Alice observes |θ〉prAlice observes |θ〉

+prBob observes |H〉 | Alice observes | π2 +θ〉prAlice observes | π2 +θ〉
=sin2

θ/2+ cos2
θ/2 = 1/2.

In the same fashion, we find
prBob observes |H〉 = 1/2.

Solution to Exercise 2.40. For the first scenario, the result immediately follows from the original Measurement
Postulate. Let us analyze the second scenario. In contrast with the previous solution, rather than using conditional
probabilities, we will argue in terms of unnormalized states which incorporate probabilities as their norm. This
difference is just a matter of bookkeeping, the physics is the same.

Alice’s measurement will generate unnormalized state

Π̂A,i |Ψ〉= |vi〉A⊗A〈vi|Ψ〉B ,

where i is random. If Bob now performs his measurement on his portion of that state, the probability for him to
observe

∣∣w j
〉

is
prBob observes |w j〉 AND Alice observes |vi〉 = |

〈
w j
∣∣(〈vi|Ψ〉) |2. (S2.17)

As we found in Ex. 2.32,
〈
w j
∣∣(〈vi|Ψ〉) =

〈
vi w j

∣∣Ψ〉. Accordingly,

prBob observes |w j〉 AND Alice observes |vi〉 = |
〈
viw j

∣∣Ψ〉 |2, (S2.18)

which is the same as what we had in the first scenario. The equivalence of the third scenario to the first one is
proven in the same way.

Solution to Exercise 2.41.
To find the overall probability for Bob to detect

∣∣w j
〉
, we must sum over all possible Alice’s outcomes:

prBob observes |w j〉 =∑
i

prBob observes |w j〉 AND Alice observes |vi〉

=∑
i
|
〈
vi,w j

∣∣Ψ〉 |2
=∑

i

〈
Ψ
∣∣ vi,w j

〉〈
vi,w j

∣∣Ψ〉
(2.19)
= ∑

i

〈
Ψ
∣∣ w j

〉
B |vi〉A A〈vi|B

〈
w j
∣∣Ψ〉

=
〈
Ψ
∣∣ w j

〉
1̂
〈
w j
∣∣Ψ〉

=‖
〈
w j
∣∣Ψ〉‖2,

which is the same probability that Bob would have if he performed his measurement before Alice. Obviously,
this probability does not depend on the sequence of Alice’s and Bob’s measurements nor on Alice’s choice of
basis {|vi〉}.
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Solution to Exercise 2.42. If cloning were possible, Alice and Bob could implement the following protocol.
They start with sharing an entangled state, e.g. |Ψ−〉. When Alice needs to send a message to Bob, she encodes
this message in the value of angle θ between 0 and π

2 , and then performs a measurement of her photon in the
basis {|θ〉 ,

∣∣π

2 +θ
〉
}, thereby instantly remotely preparing one of these two states at Bob’s station. Bob makes

many copies of this state and performs quantum tomography (see Sec. 1.4.2) on them, thereby determining the
polarization angle of his remotely prepared photon with an arbitrarily high precision. Even though this angle can
be either θ or π

2 +θ , it is sufficient to determine θ , which is known to be between 0 and π

2 . Then he decodes this
value into Alice’s original message.

Solution to Exercise 2.43. If Alice has measured her photon in the canonical basis, the resulting unnormalized
states for Bob are as follows.

a)

A〈H|Ψ〉 = |H〉/
√

5;

A〈V |Ψ〉 = 2 |V 〉/
√

5.

Accordingly, the verbal description of Bob’s photon is “either |H〉 with probability 1/5 or |V 〉 with proba-
bility 4/5”.

b)

A〈H|Ψ〉 = (|H〉+ |V 〉)/
√

3 =
√

2/3 |+〉 ;

A〈V |Ψ〉 = |V 〉/
√

3.

This state is verbally described as “either |+〉 with probability 2/3 or |V 〉 with probability 1/3”.
Note that, when projecting onto |H〉, Alice does not destroy the coherence between Bob’s |H〉 and |V 〉. This
can also be seen by rewriting the initial state as

|Ψ〉=
√

2/3 |H+〉+
√

1/3 |VV 〉 .

For the diagonal basis,

a)

A〈+|Ψ〉 =
√

1/10 |H〉+
√

2/5 |V 〉= 1√
2
(
√

1/5 |H〉+
√

4/5 |V 〉);

A〈−|Ψ〉 =
√

1/10 |H〉−
√

2/5 |V 〉= 1√
2
(
√

1/5 |H〉−
√

4/5 |V 〉),

where the state vectors in parentheses are normalized. Bob’s photon is either
√

1/5 |H〉+
√

4/5 |V 〉 or√
1/5 |H〉−

√
4/5 |V 〉 with probabilities 1/2 each.

b)

A〈+|Ψ〉 =
√

1/6 |H〉+
√

2/3 |V 〉=
√

5
6
(
√

1/5 |H〉+
√

4/5 |V 〉);

A〈−|Ψ〉 =
√

1/6 |H〉 .



S2 Solutions to Chapter 2 exercises S37

This state is either
√

1/5 |H〉+
√

4/5 |V 〉 with probability 5/6 or |H〉 with probability 1/6.

Solution to Exercise 2.44. Let

prMA,MB,NA,NB
= ∑

λA,λB

prλA,λB
prMA|λA

prMB|λB
prNA|λA

prNB|λB
. (S2.19)

Given that
1

∑
MA=−1

prMA|λA
= 1;

1

∑
MB=−1

prMB|λB
= 1;

1

∑
NA=−1

prNA|λA
= 1;

1

∑
NB=−1

prNB|λB
= 1 (S2.20)

(because, e.g., for a given λA, the values that MA can take are either +1 or −1), we find

+1

∑
MA,MB,NA,NB=−1

prMA,MB,NA,NB
= ∑

λA,λB

prλA,λB
= 1.

Let us now obtain the first term of Eq. (2.26) from the first term of Eq. (2.24); the remaining terms are
calculated similarly. We have

+1

∑
MA,MB=−1

prMA,MB
MAMB

(2.25)
= ∑

λA,λB

(
+1

∑
MA,MB=−1

prλA,λB
prMA|λA

prMB|λB
MAMB

)
(S2.20)
= ∑

λA,λB

+1

∑
MA,MB,NA,NB=−1

prλA,λB
prMA|λA

prMB|λB
prMB|λB

prNB|λB
MAMB

(S2.19)
=

+1

∑
MA,MB,NA,NB=−1

prMA,MB,NA,NB
MAMB.

Solution to Exercise 2.45. Equation (2.26) can be written as 〈S〉 = 〈MA(MB−NB)+NA(MB +NB)〉. Consider
any possible set of values for {MA,MB,NA,NB} displayed on the Fig. 2.3 in a single event. Because both MB and
NB have values of +1 or −1, either (MB−NB) or (MB +NB) must be equal to zero. Because both MA and NA is
either +1 or −1, we find that the value of S for that event must be either +2 or −2. Averaging over all events,
which is equivalent to averaging over the probability distribution prMA,MB,NA,NB

, we have |〈S〉| ≤ 2. This is the
Bell inequality.

Solution to Exercise 2.46. We find

σ̂θ = |θ〉〈θ |−
∣∣∣π

2
+θ

〉〈
π

2
+θ

∣∣∣
= (cosθ |H〉+ sinθ |V 〉)(cosθ 〈H|+ sinθ 〈V |)− (−sinθ |H〉+ cosθ |V 〉)(−sinθ 〈H|+ cosθ 〈V |)
= (cos2

θ − sin2
θ) |H〉〈H|− (cos2

θ − sin2
θ) |V 〉〈V |+2cosθ sinθ |H〉〈V |+2cosθ sinθ |V 〉〈H|

= cos(2θ)(|H〉〈H|− |V 〉〈V |)+ sin(2θ)(|H〉〈V |+ |V 〉〈H|), (S2.21)

and thus
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M̂A = σ̂0 = |H〉〈H|− |V 〉〈V |= σ̂z;

M̂B = σ̂π/8 =
1√
2
(|H〉〈H|− |V 〉〈V |+ |H〉〈V |+ |V 〉〈H|);

N̂A = σ̂π/4 = |H〉〈V |+ |V 〉〈H|= σ̂x;

N̂B = σ̂3π/8 =
1√
2
(−|H〉〈H|+ |V 〉〈V |+ |H〉〈V |+ |V 〉〈H|).

(S2.22)

Solution to Exercise 2.47.

a) To determine 〈Ψ−|M̂A⊗ M̂B |Ψ−〉, we first calculate M̂A |Ψ−〉 (because M̂A and M̂B live in different linear
spaces, they commute, so we can apply them in any order). The operator M̂A acts on Alice’s photon, leaving
the horizontal polarization unchanged, but multiplying the vertical polarization state by −1:

M̂A
∣∣Ψ−〉= 1√

2
(|H〉〈H|− |V 〉〈V |)A(|HV 〉− |V H〉) = 1√

2
(|HV 〉+ |V H〉).

Next, we act with the operator M̂B on Bob’s photon:

M̂A⊗ M̂B
∣∣Ψ−〉 = 1

2
(|H〉〈H|− |V 〉〈V |+ |H〉〈V |+ |V 〉〈H|)B(|HV 〉+ |V H〉)

=
1
2
(|V H〉− |HV 〉+ |HH〉+ |VV 〉)

and finally〈
Ψ
−∣∣M̂A⊗ M̂B

∣∣Ψ−〉= 1
2
√

2
(〈HV |− 〈V H|)(|V H〉− |HV 〉+ |HH〉+ |VV 〉) =− 1√

2
.

Of course, the same calculation could also have been carried out in the matrix form, akin to Ex. 2.13.
b) The second matrix element is found in a similar manner:〈

Ψ
−∣∣M̂A⊗ N̂B

∣∣Ψ−〉
=

1
2
√

2
(〈HV |− 〈V H|)(|H〉〈H|− |V 〉〈V |)A(−|H〉〈H|+ |V 〉〈V |+ |H〉〈V |+ |V 〉〈H|)B(|HV 〉− |V H〉)

=
1

2
√

2
(〈HV |− 〈V H|)(−|H〉〈H|+ |V 〉〈V |+ |H〉〈V |+ |V 〉〈H|)B(|HV 〉+ |V H〉)

=
1

2
√

2
(〈HV |− 〈V H|)(−|V H〉+ |HV 〉+ |HH〉+ |VV 〉) = 1√

2
.

c) The third and fourth matrix elements could also be found by a direct calculation. The calculation can however
be avoided if we remember that the state |Ψ−〉 is isotropic. If both Alice and Bob rotate their reference
frames by an angle π/8, state |Ψ−〉 will remain unchanged, operator N̂A in Alice’s space will become M̂B,
and operator M̂B in Bob’s space will become M̂A. In the new reference frame, we thus need to calculate the
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expectation value of the operator M̂B⊗ M̂A. Because state |Ψ−〉 is antisymmetric with respect to switching
Alice and Bob, the desired expectation value equals that of M̂A⊗ M̂B determined in part (a), i.e. −1/

√
2.

d) If we rotate Alice’s and Bob’s reference frames by π/4, operators N̂A and N̂B will become M̂A and M̂B,
respectively. The desired expectation value is once again equal to 〈M̂A⊗ M̂B〉=−1/

√
2

Solution to Exercise 2.49. Because we are playing “devil’s advocate”, we can make any assumptions about
the operation of the particle source, the information the particles carry, and the way Alice’s and Bob’s apparata
interpret that information, as long as these assumptions are consistent with local realism. So let us assume that
each particle carries two bits of information:

• whether the apparatus receiving this particle should display a value when the observer presses the M or N
button;

• whether the apparatus, in case the button pressed by the observer is consistent with the first bit, should display
+1 or −1.

The source chooses the first bits for each particle pair randomly. The second pair of bits is chosen also randomly,
but so that

• If the first bits in both Alice’s and Bob’s particles are M, the second pair of bits should exhibit an average
correlation of 〈MAMB〉=−1/

√
2;

• If the first bit is M in Alice’s particle and N in Bob’s particle, the second pair of bits should exhibit an average
correlation of 〈MANB〉= 1/

√
2;

• If the first bit is N in Alice’s particle and M in Bob’s particle, the second pair of bits should exhibit an average
correlation of 〈NAMB〉=−1/

√
2;

• If the first bits in both Alice’s and Bob’s particles are N, the second pair of bits should exhibit an average
correlation of 〈NANB〉=−1/

√
2.

In this way, each apparatus will display a value in one-half of all events. When both apparata do respond, the
correlations of their responses will mimic those observed in the quantum case (Ex. 2.47), thereby violating the
Bell inequality.

Solution to Exercise 2.50. For the events in which the detectors at both Alice’s and Bob’s stations function
properly, which happens with the probability prsuccess = η2, we have 〈S〉success = 2

√
2. If detectors at either

Alice’s or Bob’s station fail to register a photon, which happens with the probablility prfail = 1−η2 the displayed
values at the two stations will be completely uncorrelated, so 〈S〉fail = 0. Taking both these types of events into
account, we find

〈S〉= prsuccess 〈S〉success +prfail 〈S〉fail = 2
√

2η
2.

The critical efficiency value to violate the Bell inequality is then ηmin = 2−
1
4 = 0.84.

Solution to Exercise 2.51. The argument runs in complete analogy to Ex. 2.44. We introduce hidden parameters
λA,λB,λC associated with the three particles such that the values displayed on the three apparata depends on
these parameters:

prσiA,σ jB,σkC
= ∑

λA,λB,λC

prλA,λB,λC
prσiA|λA

prσ jB|λB
prσkC |λC

, (S2.23)

where each index i, j and k can take values x or y. Then we can introduce the quantity
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prσxA,σyA,σxB,σyB,σxC ,σyC
= ∑

λA,λB,λC

prλA,λB,λC
prσxA|λA

prσyA|λA
prσxB|λB

prσyB|λB
prσxC |λC

prσyC |λC
. (S2.24)

The sum (S2.24) must be nonnegative because so are all of its terms. Further, given that

1

∑
σxA=−1

prσxA|λA
= 1;

1

∑
σxB=−1

prσxB|λB
= 1;

1

∑
σxC=−1

prσxC |λC
= 1; (S2.25)

1

∑
σyA=−1

prσyA|λA
= 1;

1

∑
σyB=−1

prσyB|λB
= 1;

1

∑
σyC=−1

prσyC |λC
= 1,

we find
+1

∑
σxA,σyA,σxB,σyB,σxC ,σyC=−1

prσxA,σyA,σxB,σyB,σxC ,σyC
= ∑

λA,λB

prλA,λB
= 1.

This means that the quantity prσxA,σyA,σxB,σyB,σxC ,σyC
can be interpreted as a probability distribution.

Solution to Exercise 2.52. Recalling that σ̂x = |H〉〈V |+ |V 〉〈H| and σ̂y =−i |H〉〈V |+ i |V 〉〈H|, we find

a)

σ̂xA ⊗ σ̂yB ⊗ σ̂yC |ΨGHZ〉=
1√
2

σ̂xA ⊗ σ̂yB ⊗ σ̂yC(|HHH〉+ |VVV 〉)

=
1√
2

σ̂xA ⊗ σ̂yB(i |HHV 〉− i |VV H〉)

=
1√
2

σ̂xA(−|HVV 〉− |V HH〉)

=
1√
2
(−|VVV 〉− |HHH〉) =−|ΨGHZ〉 .

For the other two operators in part (a), the proof is analogous.
b)

σ̂xA ⊗ σ̂xB ⊗ σ̂xC |ΨGHZ〉=
1√
2

σ̂xA ⊗ σ̂xB(|HHV 〉+ |VV H〉)

=
1√
2

σ̂xA(|HVV 〉+ |V HH〉)

=
1√
2
(|VVV 〉+ |HHH〉) = |ΨGHZ〉 .

Solution to Exercise 2.53. The decoherence consists in losing the information about the atom’s entanglement
partner, the environment. Following the argument of Sec. 2.2.4, we find that, after that information has been lost,
the atom can be in any of the states |xi〉 with the probability pri = |ψi|2.

Solution to Exercise 2.54. The initial state of the photon pair is
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=

1√
2
(|HV 〉− |V H〉) = 1√

2

(
|θ〉⊗

∣∣∣π
2
+θ

〉
−
∣∣∣π

2
+θ

〉
⊗|θ〉

)
. (S2.26)

Let us assume that Alice’s measurement takes place first. Because Alice’s measurement is in the {|θ〉 ,
∣∣π

2 +θ
〉
}

basis, the entanglement between the system and Alice’s apparatus will be as follows:

|ΨSA〉=
1√
2

(
|wA1〉⊗ |θ〉⊗

∣∣∣π
2
+θ

〉
−|wA2〉⊗

∣∣∣π
2
+θ

〉
⊗|θ〉

)
=

1√
2

[
|wA1〉⊗ |θ〉⊗ (−sinθ |H〉+ cosθ |V 〉)−|wA2〉⊗

∣∣∣π
2
+θ

〉
⊗ (cosθ |H〉+ sinθ |V 〉)

]
where |w1,2〉 can correspond to avalanches in detectors 1 and 2, respectively. Now Bob entangles his apparatus
with this state, producing

|ΨSAB〉=
1√
2

[
|wA1〉⊗ |θ〉⊗ (−sinθ |H〉⊗ |wB1〉+ cosθ |V 〉⊗ |wB2〉)

−|wA2〉⊗
∣∣∣π

2
+θ

〉
⊗ (cosθ |H〉⊗ |wB1〉+ sinθ |V 〉⊗ |wB2〉)

]
.

Solution to Exercise 2.55. The number of branches that contain k out of n results with horizontal polarization is
given by the combinatoric expression (

n
k

)
=

n!
k!(n− k)!

.

Since the total number of the superposition terms equals 2n, the fraction of the terms we are interested in equals(
n
k

)/
2n =

n!
2nk!(n− k)!

(S2.27)

Solution to Exercise 2.57.
Without loss of generality, let us assume that n is even and find the logarithm of the ratio between the number

of terms that contain k horizontal polarization components and those that contain n/2 such components. Using
the Stirling approximation we obtain

r = log
[(

n
k

)/(
n

n/2

)]
(S2.28)

= log
[(n/2)!]2

k!(n− k)!
= 2log[(n/2)!]− log[(n/2+δ )!]− log[(n/2−δ )!]
≈ n[log(n/2)−1]− (n/2+δ )[log(n/2+δ )−1]− (n/2−δ )[log(n/2−δ )−1]

where δ ≡ k−n/2.
Now we use the Taylor decomposition to approximate
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log(x±δ ) = logx+ log
(

1± δ

x

)
= logx± δ

x
− δ 2

2x2 +O(δ 3). (S2.29)

Substituting this result into Eq. (S2.28) we find

r≈ n[log(n/2)−1]− (n/2+δ )

[
log(n/2)+

2δ

n
− 2δ 2

n2 −1
]
− (n/2−δ )

[
log(n/2)− 2δ

n
− 2δ 2

n2 −1
]
≈−2δ 2

n
,

from which Eq. (2.41) follows.

Solution to Exercise 2.58.

a) In Ex. 2.55, we found that, in the tree shown in Fig. 2.5(a), the number of paths containing k solid branches
(corresponding to an observation of the horizontal polarization) and n−k dashed branches (vertical polariza-

tion) is
(

n
k

)
. Each solid branch in Fig. 2.5(a) is replaced by mH branches in Fig. 2.5(b), while each dashed

branch is replaced by mV branches. Therefore the number of paths with k solid branches and n− k dashed

branches in Fig. 2.5(b) is
(

n
k

)
mk

Hmn−k
V .

b) See Fig. 2.6(b);
c) Following in the footsteps of the previous exercise, we are looking for the logarithm of the ratio between

the number of terms that contain k horizontal polarization components and those that contain α2n such
components. We set δ = k−α2n. Using the result from part (a), we have

r = log
[

mk−α2n
H mα2n−k

V

(
n
k

)/(
n

α2n

)]
(S2.30)

= log

[
α2δ

β−2δ

(α2n)!(β 2n)!
(α2n+δ )!(β 2n−δ )

]
Stirling
≈ (logα

2− logβ
2)δ

+α
2n(logα

2n−1)+β
2n(logβ

2n−1)

−
(
α

2n+δ
)(

log(α2n+δ )−1
)

−
(
β

2n−δ
)(

log(β 2n−δ )−1
)

(S2.29)
≈ (logα

2− logβ
2)δ

+α
2n(logα

2 + logn−1)+β
2n(logβ

2 + logn−1)

−
(
α

2n+δ
)(

logα
2 + logn+

δ

α2n
− δ 2

2α4n2 −1
)

−
(
β

2n−δ
)(

logβ
2 + logn− δ

β 2n
− δ 2

2β 4n2 −1
)

≈− δ 2

2α2β 2n
.

In the above transformation, we used mH/mV = α2/β 2 and α2 +β 2 = 1.
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Solution to Exercise 2.59.

a) From the description of the operator, we immediately write

̂C−NOT = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11| '


1

1
1

1

 (S2.31)

b) Similarly,

̂C−PHASE = |00〉〈00|+ |01〉〈01|+ |10〉〈10|− |11〉〈11| '


1

1
1
−1

 (S2.32)

c) The Hadamard gate in the local space maps |0〉 → |+〉 = (|0〉+ |1〉)/
√

2 and |1〉 → |−〉 = (|0〉− |1〉)/
√

2.
In the tensor product space, the Bob’s local Hadamard operator maps

|00〉 → |0+〉 ;

|01〉 → |0−〉 ;

|10〉 → |1+〉 ;

|11〉 → |1−〉

and can thus be written as

1̂⊗ Ĥ = |0+〉〈00|+ |0−〉〈01|+ |1+〉〈10|+ |1−〉〈11| .

Now using Eq. (A.21) we find, in the canonical basis,

1̂⊗ Ĥ ' 1√
2


1 1
1 −1

1 1
1 −1

 . (S2.33)

All these operators are unitary (we can verify this against the definition of unitarity or simply notice that
each of them maps an orthonormal basis onto an orthonormal basis). This means one can implement them in a
physical process.

Solution to Exercise 2.60. Multiplying matrix (S2.33) by (S2.32) and again by (S2.33), we obtain matrix
(S2.31).

Solution to Exercise 2.61. Because the Hamiltonian can be written as

Ĥ = 0 |HH〉〈HH|+0 |HV 〉〈HV |+0 |V H〉〈V H|+ h̄ω |VV 〉〈VV | ,

the evolution operator is
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e−
i
h̄ Ĥt = e0 |HH〉〈HH|+ e0 |HV 〉〈HV |+ e0 |V H〉〈V H|+ e−iωt |VV 〉〈VV | .

For ωt = π ,
e−

i
h̄ Ĥt = |HH〉〈HH|+ |HV 〉〈HV |+ |V H〉〈V H|− |VV 〉〈VV | ,

which constitutes the c-phase gate.

Solution to Exercise 2.62. Applied to the system and apparatus together, the c-not gate (S2.31) takes the form

̂C−NOT = |v1w1〉〈v1w1|+ |v1w2〉〈v1w2|+ |v2w2〉〈v2w1|+ |v2w1〉〈v2w2| . (S2.34)

It will transform the system in a state such as (2.32) and the apparatus in state |w1〉 into

̂C−NOT(α |v1〉+β |v2〉)⊗|w1〉= (α |v1w1〉+β |v2w2〉

in agreement with the von Neumann expression Eq. (2.33).

Solution to Exercise 2.63.
Acting with the c-not gate (S2.31) upon a separable state (|0〉+ |1〉)⊗|0〉/

√
2, we obtain (|00〉+ |11〉)/

√
2 =

|Φ+〉, which, as we know (Ex. 2.6), is entangled.
The fact that c-phase can also create entanglement follows from the fact that it can be expressed as a product

of local unitaries (Hadamard gates) and the c-not gate (Ex. 2.59). As we know from Ex. 2.21, a local unitary
operator cannot change the state’s property of being entangled. Therefore, if the c-not gate creates entanglement,
so does the c-phase gate.

Here is a specific example: acting with the c-phase gate (S2.32) upon separable state |++〉= 1
2 (|00〉+ |01〉+

|10〉+ |11〉), we obtain 1
2 (|00〉+ |01〉+ |10〉− |11〉) = 1√

2
(|0+〉+ |1−〉). This state is entangled, because it is

obtained from Bell state |Φ+〉= 1√
2
(|00〉+ |11〉) by means of a Hadamard operation on the second photon.

Solution to Exercise 2.64. Subjecting Bell states to the c-not gate, we obtain∣∣Ψ+
〉
=

1√
2
(|HV 〉+ |V H〉)→ 1√

2
(|HV 〉+ |VV 〉) = |+V 〉 ;∣∣Ψ−〉= 1√

2
(|HV 〉− |V H〉)→ 1√

2
(|HV 〉− |VV 〉) = |−V 〉 ;∣∣Φ+

〉
=

1√
2
(|HH〉+ |VV 〉)→ 1√

2
(|HH〉+ |V H〉) = |+H〉 ;∣∣Φ−〉= 1√

2
(|HH〉− |VV 〉)→ 1√

2
(|HH〉− |V H〉) = |−H〉 .

Now measuring the first photon in the diagonal basis, and the second photon in the canonical basis, we can
distinguish all four states.

Solution to Exercise 2.65.

a)
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|χ〉⊗
∣∣Ψ−〉 = (α |H〉+β |V 〉)⊗ 1√

2
(|H〉⊗ |V 〉− |V 〉⊗ |H〉)

=
1√
2
(α |HHV 〉−α |HV H〉+β |V HV 〉−β |VV H〉). (S2.35)

b) From the definition of Bell states, we find

|HH〉= |Φ
+〉+ |Φ−〉√

2
; (S2.36)

|HV 〉= |Ψ
+〉+ |Ψ−〉√

2
; (S2.37)

|V H〉= |Ψ
+〉− |Ψ−〉√

2
; (S2.38)

|VV 〉= |Φ
+〉− |Φ−〉√

2
. (S2.39)

c) Using the results of the two previous parts, we find

|χ〉⊗
∣∣Ψ−〉 = 1

2
(
α
∣∣Φ+V

〉
+α

∣∣Φ−V
〉
−α

∣∣Ψ+H
〉
−α

∣∣Ψ−H
〉

+ β
∣∣Ψ+V

〉
−β

∣∣Ψ−V
〉
−β

∣∣Φ+H
〉
+β

∣∣Φ−H
〉)

. (S2.40)

d) Factoring out the Bell states in Eq. (S2.40), we obtain

|input〉 = 1
2

∣∣Ψ−〉(−α |H〉−β |V 〉)+ 1
2

∣∣Ψ+
〉
(−α |H〉+β |V 〉)

+
1
2

∣∣Φ−〉(α |V 〉+β |H〉)+ 1
2

∣∣Φ+
〉
(α |V 〉−β |H〉). (S2.41)

This equation has the form of Eq. (2.15). A measurement by Alice will randomly select one of the four terms
in the above equation and prepare the corresponding state at Bob’s station. Because the norm of each term
is 1/2, the probability of each result is (1/2)2 = 1/4.

e) • If Alice detects |Ψ−〉, Bob’s photon will project onto −(α |H〉+β |V 〉), which, up to an overall phase
factor, is identical to the source state |χ〉. In this case Bob does not need to do anything.

• If Alice detects |Ψ+〉, Bob’s photon will project onto −(α |H〉−β |V 〉). To obtain |χ〉, Bob will need to
perform an operation which does not change the horizontally polarized photon, but applies a phase factor
of (−1) to the vertically polarized. This operation is achieved by Pauli operator σ̂z = |H〉〈H|− |V 〉〈V |,
and physically implemented by means of a half-waveplate with its optic axis oriented horizontally or
vertically (Ex. 1.26).

• If Alice detects |Φ−〉, Bob’s photon will project onto (β |H〉+α |V 〉). In this case, Bob needs to flip
between horizontal and vertical polarizations, which is done by Pauli operator σ̂x = |H〉〈V |+ |V 〉〈H|.
This corresponds to a half-wave plate at 45◦.

• If Alice detects |Φ+〉, Bob’s photon will project onto (−β |H〉+α |V 〉). Bob must both flip the polariza-
tions and shift the phase of one of the polarizations, i.e. apply σ̂zσ̂x = |H〉〈V |− |V 〉〈H| by means of two
half-waveplate, one oriented at 45◦ and the other at 0◦. Note that we can write this operator as σ̂zσ̂x = iσ̂y.
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Solution to Exercise 2.66. Proceeding in a similar fashion to the quantum teleportation argument, we find:∣∣Ψ−Ψ
−〉

1234 =
1
2
(|HV HV 〉− |HVV H〉− |V HHV 〉+ |V HV H〉)1234

=
1

2
√

2

[
|H〉1

(∣∣Ψ+
〉
−
∣∣Ψ−〉)23 |V 〉4−|H〉1

(∣∣Φ+
〉
−
∣∣Φ−〉)23 |H〉4

− |V 〉1
(∣∣Φ+

〉
+
∣∣Φ−〉)23 |V 〉4 + |V 〉1

(∣∣Ψ+
〉
+
∣∣Ψ−〉)23 |H〉4

]
=

1
2
√

2

[∣∣Ψ−〉23 (−|HV 〉+ |V H〉)14 +
∣∣Ψ+

〉
23 (|HV 〉+ |V H〉)14

+
∣∣Φ−〉23 (|HH〉− |VV 〉)14 +

∣∣Φ+
〉

23 (−|HH〉− |VV 〉)14
]

=
1
2
[
−
∣∣Ψ−〉23

∣∣Ψ−〉14 +
∣∣Ψ+

〉
23

∣∣Ψ+
〉

14 +
∣∣Φ−〉23

∣∣Φ−〉14−
∣∣Φ+

〉
23

∣∣Φ+
〉

14

]
.

Detecting photons 2 and 3 in a particular Bell state will entangle the remaining two photons, projecting them
onto the same Bell state. As in the case of quantum teleportation, the probability of each measurement outcome
is 1/4.

Solution to Exercise 2.67. Using the result of Ex. 2.66, we find that, when the initial states |Ψ−Ψ−〉1234 are
projected onto the detected states |Φ+〉23 and |Φ−〉23 in the first and second links, the states of the stored photons
become |Φ+〉14 and |Φ−〉14, respectively. Relabeling these photons with letters from A to D, we find their joint
state to be ∣∣Φ+

〉
AB⊗

∣∣Φ−〉CD =
1
2
(|HHHH〉− |HHVV 〉+ |VV HH〉− |VVVV 〉)ABCD.

Projecting this state onto |Ψ+〉BC, we obtain |Ψ−〉AD.

Solution to Exercise 2.68.

a) According to Beer’s law (Sec. 1.6.2), the probability for each photon to reach the Bell-basis analyzer is
e−βL/2k. The probability that both photons reach the Bell-basis analyzer is therefore pr1 = (e−βL/2k)2 =
e−βL/k = 0.082.
To find the probability of success after n attempts, we notice that the probability of failure after one attempt
is 1−pr1, and hence the probability that all n attempts fail is (1−pr1)

n. Hence the probability that at least
one of the n attempts does not fail is prn = 1− (1−pr1)

n = 1− (1− e−βL/k)n.
b) Here the event whose probability is prn must occur simultaneously in k links. The probability of this is

prk
n = [1− (1− e−βL/k)n]k.

c) Solving prk
n = 1/2, we find for the required number of attempts

n = log1−pr1

[
1−
(

1
2

) 1
k
]
=

ln(1−2−
1
k )

ln(1− e−
βL
k )

= 31.6.

The required time is therefore n/ f = 31.6 µs.
d) The probability for a single photon sent directly from Alice to reach Bob is pr′1 = e−βL = 1.39×10−11. The

probability of success for n′ attempts is then pr′n = 1− (1− e−βL)n. Setting pr′n = 1/2, we have
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n′ = ln1−e−βL
1
2
=

− ln2
ln(1− e−βL)

≈ ln2
e−βL = 5.0×1010,

so the expected time is t ′ = n′/ f = 50,000 s.




