University of Calgary Fall semester 2015

PHYS 543: Quantum Mechanics II

Homework assignment 1

Due Monday, September 21, 2015

Problem 6.1. Find the general form of the commutator $[\hat{L}_j, [\hat{L}_k, \hat{r}_l]]$. Check your answer by specific examples: $[\hat{L}_x, [\hat{L}_y, \hat{r}_z]], [\hat{L}_x, [\hat{L}_x, \hat{r}_z]]$ and $[\hat{L}_x, [\hat{L}_z, \hat{r}_x]]$.

Problem 6.2. As discussed in class, the raising and lowering operators \hat{L}_{\pm} respectively increase and decrease the eigenvalue \hat{L}_z by \hbar .

- a) Construct similar operators \hat{L}^x_{\pm} for the eigenstates of \hat{L}_x
- b) Find their matrices for the subspace with l = 1 in the eigenbasis of \hat{L}_z .
- c) Find the eigenstates of \hat{L}_x in the matrix form in the eigenbasis of \hat{L}_z .
- d) Apply \hat{L}_{\pm}^x to the eigenstates of \hat{L}_x found in part (c) and verify that their action is analogous to that of \hat{L}_{\pm} on the eigenstates of \hat{L}_z .

Problem 6.3. A general expression for the spherical harmonics is

$$Y_l^m(\theta,\phi) = \mathcal{N}_l \sqrt{\frac{(l+m)!}{(l-m)!}} \sin^{-m} \theta \frac{d^{l-m}}{d(\cos\theta)^{l-m}} \sin^{2l} \theta e^{im\phi},\tag{1}$$

where

$$\mathcal{N}_{l} = (-1)^{l} \sqrt{\frac{2l+1}{4\pi}} \frac{1}{2^{l} l!}$$
(2)

is the normalization factor.

- a) Calculate $Y_1^1(\theta, \phi)$ according to Eq. (1).
- b) Verify that the application of the raising operator to this wavefunction gives zero.
- c) Verify the correctness of the normalization factor for $Y_1^1(\theta, \phi)$.
- d) Verify that $Y_1^1(\theta, \phi)$ represents an eigenstate of \hat{L}^2 with eigenvalue $2\hbar^2$ by applying operator \hat{L}^2 in the position basis.
- e) Apply the lowering operator to state $Y_1^1(\theta, \phi)$ to find $Y_1^0(\theta, \phi)$ and verify consistency with Eq. (1).

Hint: a general solution for arbitrary l is given in the lecture notes, but here you must show the full calculation for a specific case l = 1.

Problem 6.4. A pair of electrons, shared between Alice and Bob, are prepared in an entangled spin state

$$\left|\Psi^{-}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|\uparrow\downarrow\right\rangle - \left|\downarrow\uparrow\right\rangle\right),$$

where $|\uparrow\rangle = |m_s = 1/2\rangle$ and $|\downarrow\rangle = |m_s = -1/2\rangle$. Alice measures the projection of the electron's spin onto vector $\vec{R}_{\theta,\phi}$ defined by spherical angles (θ, ϕ) . Find the probability of each possible outcome of this measurement and the resulting state of Bob's electron.