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Thin Lenses and Optical Instruments 
 
 
  Equipment 
 
 1 meter optical bench with 5 moveable mounts, lighted test object, 3 lens holders, 
screen, 2 short focal length double convex lenses (L1, E1), 2 medium focal length double convex 
lenses (L2 and L3), 1 long focal length double convex lens (L4), 1 double concave lens (L5), 
diopter gauge, meter stick, ruler, flashlight. 
 
 
  Purpose 
 
 To observe the operation of thin lenses and gain experience with the placement and 
alignment of optical components. To examine and measure real and virtual images in simple 
optical systems. To measure the focal lengths of double convex and double concave lenses. To 
understand the operation of simple optical instruments and to construct a simple microscope and 
telescope. 
 
 
  Theory 

 
 An understanding of lenses as converging or diverging and a classification of their 
surfaces as concave, convex, or planar is needed for this experiment. The relationship between 
object distance o , image distance i , and lens focal length, f, is used in several parts of the 

xperiment. The formula relating these quantities is the thin lens equation: 
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A second formula that is used in parts of this experiment is the magnification of an image. For 
n object height, yo, and an image height, yi, the magnification, M, is given by a
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A significant portion of the experiment involves measuring the focal lengths of different lenses. 
An instrument commonly used for this purpose is the diopter gauge. The principle of operation 
of the diopter gauge is based on the lensmaker equation (2). Suppose a thin lens immersed in 
air is made from a material with index of refraction, n. One side of the lens has radius of 
curvature, R1, and the other side has a radius of curvature, R2. The focal length of the lens is 

iven by the lens maker’s equation g
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 For lenses that are double convex, R1 is positive and R2 is negative, so equation (3) 
implies that this type of lens has positive focal length. For lenses that are double concave, R1 is 
negative and R2 is positive, so equation (3) implies that this type of lens has negative focal 
length. If one of the surfaces is flat the radius of curvature will be infinite. The reciprocal is then 
zero and the lens maker’s formula implies that this surface does not contribute anything towards 
determining the focal length. A lens with both sides flat (a window) has an infinite focal length. 
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 In many optics formulae (including the lens maker’s equation), the focal length only 
appears as a reciprocal. It therefore makes sense to define a unit of reciprocal focal length. The 
power, D, of a lens is defined as the reciprocal of the focal length of the lens in meters. The unit 
of lens power is called the diopter (D ). Since converging lenses have positive focal lengths and 
diverging lenses have negative focal lengths, the power of a lens is positive for converging lenses 
and negative for diverging lenses. For example, a converging lens with a focal length of one 
meter has a power of one diopter (1 diopter = 1m-1). A diverging lens with a focal length of 0.2 
meters has a power of -5.0 diopters. A flat piece of window glass does not converge or diverge 
incoming light rays, it has a power of zero diopters. The lens maker’s formula can be rewritten in 
terms of dioptric power to get 
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 As shown in Figure 1, imagine a 
lens, L, as being split in half to form a 
combination of two lenses, LLeft and 
LRight, each of which is flat on one side. 
The two lenses, LLeft and LRight, are in 
contact on their flat sides and touching. 
Lens L has a radius of curvature R1 on the 
left and R2 on the right. The power of lens 
L is given by equation (4). Lens LLeft has a 
radius of curvature R1 on the left and ∞ on 
the right. Similarly, Lens LRight has radius 
of curvature ∞ on the left and R2 on the 
right. Let the power of lens LLeft be DLeft 
and the power of lens LRight be DRight. 
Then by the lens maker’s formula the 

ower of each half lens is given by 

L LLeft LRight

R1 R2 R1 R2∞  
Figure 1 
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 Observe that the sum of 
equations (5) and (6) yields equation (4). 
This means that the power of a lens is 
equal to the sum of the powers of its 
two surfaces. If an instrument could 
measure the power of a single surface 
then the focal length of a lens could be 
measured by adding together the power of each lens surface. This is one of the principles upon 
which the operation of a diopter gauge is based. 
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Figure 2 

 Figure 2 shows a diagram of a diopter gauge measuring one surface of a lens. A diopter 
gauge measures the power of a single surface by determining the radius of curvature. The gauge 
is held against the surface of the lens so that it is perpendicular to the surface and the two fixed 
pins are touching the glass. If it is assumed that the surface is a section from a circle then the 
amount that the moveable pin is compressed determines the radius of curvature of the surface. If 
the index of refraction of the material is known, the dioptric power of the surface can be found 
from equation (5). The diopter gauges used in this experiment are calibrated for crown glass 



3 

with an index of refraction of 1.525. The scales read off the power of the surface directly in 
diopters when the lens material is crown glass. 
 The procedure for measuring the power of a lens with the diopter gauge is as follows. 
Determine whether the surface is convex or concave by holding a straight edge against the lens. 
Do not scratch the surface or leave fingerprints on it. If the surface is convex read from the black 
inner scale. If the surface is concave read from the red outer scale. A flat surface will read zero 
on both scales. Hold the gauge perpendicular to the surface so that all three pins touch the 
surface. The pins are rounded and treated so that they do not scratch the glass. Read the power 
of the surface in diopters. Repeat the procedure for the other surface. The total power of the lens 
is sum of the two diopter readings. The focal length is then the inverse of this number in meters. 
 The rules for adding powers of surfaces together to get the total power of a lens are 
simple. Convex surfaces have positive power, concave surfaces have negative power, and flat 
surfaces have zero power. The total lens power is the sum of the power of the two surfaces. 
Examples for various types of lenses are shown in Figure 3. 
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Figure 3 

 Another method useful for determining the focal length of a lens is called the 
displacement method. Suppose an object and a screen are located a fixed distance, b, apart. 
The converging lens whose focal length is to be measured is in between. As the lens is moved to 
different locations between the object and the screen it is found that a real image is focused on 
the screen only when the lens is in two specific positions. At one position the image is larger than 
the object and at the other position the image is smaller than the object.  

 As in Figure 4, define a as the separation between the two positions of the lens. Once a 
and b are known, the focal length can be found by the formula 

a
b

object (fixed) image (fixed)

1st position 2nd position

i1o1

o2 i 2

     
Figure 4    
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The smallest possible value a can have is zero. Substituting a≥0 into equation (7) shows that the 
longest focal length that can be measured for a given b is b/4. For the optical bench used in this 
experiment, this limits the measurable focal length to anything below 30 cm. 
 An advantage of this method is that it gives accurate results because the distance, a, is 
independent of the thickness of the lens and the position of the lens in the lens holder. Similarly, 
the distance, b, between object and screen can be measured accurately so that offsets of the 
screen and object can be eliminated. Furthermore, b needs to be measured only once since 
object and screen remain fixed. 
 A second advantage of this method is that it permits the measurement of sizes and 
positions of inaccessible objects such as the filament inside a bulb or a virtual image located 
behind a lens. This will be used in this experiment to measure the position and magnification of a 
virtual image produced by a lens used as a magnifier. It will also be used in this experiment to 
measure the position of a virtual image generated by a diverging lens. 
 Imagine replacing the object in Figure 4 with some sort of lens system that produces a 
virtual image, such as a concave lens. Apply the displacement method with a lens of known focal 
length to get a value for a. Solving equation (7) for b then gives a value for the position of the 
virtual image. 
 The size of the virtual image can also be measured. Suppose the virtual image has size, 
y. Let  and  be the sizes of the real image on the screen for the two possible positions of 
the lens. Let M1 and M2 be the magnifications at the two lens positions. M1 and M2 are 
reciprocals. So 

1y 2y
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Virtual image at infinity

Object at focal point
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Figure 5   
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Therefore, the virtual image size, y, is 
     21 yyy = .    (9) 
 
Equation (9) gives the size of the image being tested from the measured sizes of the images on 
the screen. 
 An optical instrument is a combination of optical elements that creates a magnified 
image of a small or distant object. One of the simplest optical instruments is the simple 
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magnifier or magnifying glass, which is a single converging lens which produces a virtual, 
magnified image of an object placed on or just inside the focal fange of the lens (figure 5).  

To understand the function of a magnifying glass, we first analyze a naked eye observer 
who is viewing a small object. Such an observer will try to make an object appear larger by 
bringing it closer to his or her eye. At a certain point, however, the object will become blurry as 
the eye can no longer accommodate the strong focus required to cast an image on the retina. 
This point is called the near point and is defined to be 25 cm (although of course the exact 
position at which this occurs will vary from observer to observer). The object at the near point 
observed with a naked eye  subtends an angle  (figure 5).  cm25/tan 0

1
0 h−=α

If we observe an object through a magnifying glass, we are in fact looking at its a virtual, 
magnified image created near infinity (recall that for optical purposes, infinity means at a distance 
much larger than the scale of the experiment). The angular size of the image is the same as that 
of the object: fho /tan =α  (figure 5). However, because the image is far away, the eye will 
have no problem focusing on it. In this way, if f < 25 cm, the magnifying glass allows us to 
increase the angular size of the image by letting us bring the object closer to the eye. 

The angular magnification of the magnifying glass is given by the ratio of the apparent 
image's angle α  to that of the angle 0α  made by the object when viewed by the unaided eye: 
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 Despite the advantage of being simple, the magnifying power of the simple magnifier is 
limited by aberrations. In order to achieve high magnification of a nearby object with fewer 
aberrations, the compound microscope is used, achieving magnifications much greater than 
that of the simple magnifier. A simple compound microscope is shown in figure 6. The objective 
lens produces a real, inverted, and magnified image known as the intermediate image. A simple 
magnifier is then used to produce a magnified virtual image of the intermediate image.  
 

 
 

Say we wish to magnify an object of height with a compound microscope as in figure 

6. How much magnification do we see? The height of the intermediate image is 
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so the magnification due to the objective lens is oiobj ssM /= . The image is then put through a 
simple magnifier with magnification given by equation (10). The total magnification is then given 
by the product of the two magnifications: 
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In contrast to the microscope which 
magnifies the image of a near-by object 
with a generally high powered objective, 
the purpose of the telescope is to 
increase the retinal image of a distant 
object. Figure 7 displays the principles of 
a Keplerian telescope. The object is 
assumed to be at infinity (which in terms 
of optics means at least a few meters) so 
that incoming rays are parallel to one another. The objective lens forms a real, inverted 
intermediate image. From equation (1), we see that if ∞→os , the fsi ≈ , so the image is 
formed at the focal point of the objective. The eyepiece once again produces, at infinity,  a virtual 
image of the intermediate image. Note that for distant objects, the objective lens and magnifying 
eyepiece are nearly confocal.  

 
 
 
To arrive at an expression for the magnification of a Keplerian telescope observe figure 8 

where a large object of height o  is viewed at a great distance L . Since , we have that h Lho <<
Lho /sin =≈ αα . Because Lso =  is large, the intermediate image is located at 

[according to equation (1)] and has the size oii fs ≈ Lhfh eii /= [according to equation (2)].  
The intermediate image is placed near the focal point of with the eyepiece, and we look 

at it as if through the magnifying glass, seeing a magnified virtual image of the intermediate 
image. Following the magnifying glass argument, we see that the angular size of this image (from 
the viewpoint of the observer) is )/(/ eoeii Lfhffh ==α , we can then write the magnification of 
the Celeriac telescope: 
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Figure 9 shows the experimental layout. Optical components such as lenses, screens 
and test objects can be placed into holders that slide along on an optical bench. The optical 
bench ensures that all the components are aligned correctly. The side of the optical bench has a 
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scale that is used to measure or set the distances between various components. A lighted test 
object is used to make image location clearly visible. 

Five converging lenses ranging in focal lengths from short (L1) and (E1), through 
medium (L2 and L3), to long (L4), and one diverging lens (L5) are supplied for use in the 

experiment. 

 

lens holder

screen

optical bench

lens

distance scale

lighted test object

 
Figure 9 

 
 Experimental Procedure 
 
1) The laboratory lights should be dimmed for the duration of this experiment. It is possible to 
determine the focal length of converging lenses in several ways. This experiment begins by 
examining some different methods for measuring focal lengths of converging lenses. First, 
determine the focal lengths of lenses L1, L2, L3, and L4 by the method of placing an object at 
infinity. For a converging lens, when an object is at infinity the image lies at the focal point with 
zero size. As an approximation to an object at infinity, use a lighted object on the other side of the 
laboratory. Point the optical bench at the lighted object. The lens to be measured is placed into a 
holder on the optical bench. Using the screen, locate the position of the real image and thereby 
the focal length. After these measurements it may be useful to place the lenses on a labeled 
sheet of paper with the relevant symbols L1 through L5 so that the lenses do not get mixed up. 
L1 is the shortest focal length converging lens and L4 the longest, with L2 and L3 intermediate. 
L5 is the diverging lens. 
 
2) Determine the focal lengths of lenses L1, L2, L3, L4, and L5 with the diopter gauge. 
 
3) Use the displacement method to measure the focal length of lens L2. Place the screen at a 
scale reading of 0 on the optical bench and the lighted object at a scale reading of about 100-120 
on the optical bench. With lens L2 between the object and the screen locate the two positions 
where a real image is formed on the screen. Note that the value of b is not just the difference 
between the readings on the optical bench because the screen and the object are offset from the 
bench sliders by different distances. 
 
4) The object distance, o, and image distance, i, are related by equation (1). For at least five 
different object distances, measure the image distance for the real image produced by lens L3 on 
the screen. The focal length of L3 can be found by plotting a graph of 1/i versus 1/o. 
 
5) Having measured the focal lengths of some converging lenses by several different methods 
we now turn our attention to measuring the focal length of a diverging lens using two different 
methods. Place the screen at a scale reading of zero on the optical bench and the lighted object 
at a scale reading of 115 on the optical bench. Put lens L5 in a lens holder and position it 10 to 
20cm from the lighted object. A glance into L5 shows a virtual image at a position somewhere 
behind lens L5 that is smaller than the object. 
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Figure 10 

 
Select L2 as a lens with known focal length, f, and place it on the optical bench between L5 and 
the screen. Use the displacement method to find a value for b. This gives a value for the distance 
of the virtual image, i, from lens L5. Equation (1) can then be used to find the focal length of L5 
since the object distance, o, between the lighted test object and L5 is readily measured.  
 
6) The focal length of a diverging lens can also be found by measuring how far a real image shifts 
when the diverging lens is added to the system. As shown in Figure 11, suppose a converging 
lens like L1 is used to form a real image on a screen at point R. When diverging lens L5 is placed 
between L1 and the screen, the real image is no longer focused on the screen. The focal point 
has moved further away so that a real image appears on a screen at point S instead. Lens L5 
diverges the light rays so they meet at a point further away. 
 This shift in focal length can be used to obtain a value for the focal length of L5. When L5 
is inserted the real image at R disappears. Instead, lens L5 generates a real image at the new 
position S from the virtual object at point R. The image distance is the distance from L5 to S (it 
is positive). The object distance is the distance from L5 to R (it is negative). Equation (1) can be 
used to determine the focal length of L5. 

7) Attach the microscope grid to the dark side of the screen and observe it through lens L2 as the 
magnifying glass. First bring the lens close to the screen, you will see a slightly magnified virtual 
image. Then gradually move the lens away from the screen. Keep moving until your eyes can no 
longer focus on the image; this means you have reached the focal distance (in fact, you are 
probably still a couple of centimeters within the focal range; when you are too close to the focal 
points, aberrations will come into play and distort your imaging). Verify this by a direct 
measurement. Determine the magnification as shown in figure 12 (count the number of lines you 
see with the naked eye that fit in between three or four lines of the magnified image) and 
compare it to that predicted by equation (10).  of

Real object SL1 RL5

Real Image without L5

Virtual Object with respect to L5
 

Figure 11 
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8) Construct a compound microscope. First, create a 
real, magnified intermediate image of the illuminated 
source on the screen using lens L1 as shown in figure 6. 
Determine the magnification by direct measurement. 
Second, set up the magnifying glass (step 7) to observe 
the microscope grid on the back side of the screen. 
Determine the magnification. Third, remove the screen 
and observe a magnified image of the source through the 
magnifying glass. Fourth, replace the illuminated source 
by the screen with the microscope grid. Determine the 
magnification using the scheme in figure 12 and compare 
it with equation (11).  
 
9) Using lenses L1 and L3, construct a Keplerian 
telescope with figure 7 as your guide. Question: for a 
positive greater than 1 magnification, which lens will you 
use as the objective? Make sure the focal length of L1 
and L3 overlap as in figure 7. Tape the telescope grid 
sheet to the opposite wall and peer through your telescope with one eye. Determine the 
magnification from equation (12). How does your measured value compare with equation (12)? 
What is the significance of the negative sign in the magnification? You may have to experiment to 
find the right lens separations for your telescope. You should see a clear image with a visible 
magnification when the lenses are properly aligned. 
 
 
  Error Analysis 
 
 One source of error in this experiment comes from uncertainties in positioning the lenses. 
The optical bench permits reasonably accurate positioning of lenses along the bench. However, 
the height at which the lenses are placed is not precisely adjustable. Also, the orientation of the 
lenses should be perpendicular to the optical bench and parallel to the lighted object. 
Adjustments in these directions are not available on the apparatus except by rough positioning of 
the lens inside the lens holder. 
 A second source of error in this experiment is due to aberrations in the lenses 
themselves. A full discussion of the deviations of physical glass lenses from the theoretical ideal 
is beyond the level of this course. However, it can easily be seen that the quality of images at the 
edges is quite different from image quality at the center. This suggests that the lenses used in 
this experiment have different properties at their edges than at their centers. One reason for this 
difference is that the lenses have different thicknesses at the edge and at the center. Many of the 
optics formulas used in this experiment assume that the lenses are thin to partly remove this 
difficulty. 
 Thirdly, there is the issue of determining when an image is properly in focus. When a real 
image is observed on a screen, there is a certain tolerance in the position of all instruments within 
which the image appears focused. This tolerance should be determined experimentally and 
included in your analysis. 
 Finally, there is a huge systematic error in determining the magnification using the grid 
method in steps 7-9. You should independently determine how this error translates into your 
value for the magnification and what the possible ways of reducing it are. 
 
 
  To be included in your lab report 
 

1. The values for the focal length of each lens measured in step 1. 
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2. The diopter power and corresponding focal length of the lenses from step 2. 
 

3. The values of a and b from the displacement method in step 3, along with the 
corresponding focal length. 

 
4. The plot of step 4, with uncertainties, along with the slope and corresponding focal 

length. 
 

5. The focal lengths from steps 5 and 6. Include the calculation performed in step 6. 
 

6. Derive equation (7). Show that 121 =MM  in equation (8). 
 

7. The magnification measured in step 7, its theoretical prediction, error analysis. 
 

8. A diagram of your microscope with all positions displayed. Measured and calculated 
magnifications from substeps 1, 2, and 4 of step 8. Error analysis. 

 
9. A sketch of your telescope. Show a calculation of the theoretical value for magnification, 

and state your measured value with an explanation of the uncertainties involved. 
 

10. What kind of aberrations have you observed in this experiment? 
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