
Polarization Engineering 
 
 
  Equipment 
 
 2 Optical benches with pivot. Photodetector. Helium Neon Laser, 2 quarter-wave plates 
and 1 half-wave plate. 2 Linear Polarizers. Quartz plates.  
 
  Purpose 
 
 To understand the concept of polarization of light. To test Malus’ law. To generate light of 
a given polarization and to determine the polarization of a given light.  
 
 
  Theory 
  
 Consider a plane electromagnetic wave propagating along the direction of the z axis. The 
electric field vector in this wave can be written as  
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where  and  are unit vectors along the x and y axes, 

respectively; and are the complex amplitudes. The 
intensity of light in each polarization is proportional to 
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Observing the trajectory of the tip of the electric field 
vector at a specific point in space, we find that, dependent on 
the amplitude and relative phase of the two component, the trajectory will form a certain pttern, 
which we call the polarization pattern or polarization state. A polarization state is pure when 
the amplitudes are constant in time. Pure polarization patterns of plane waves (1) are classified 
as follows: 

• Linear polarization: )(argarg 00 π±= xy EE . There are important special cases: 

o Horizontal polarization: 00 =yE  

o  Vertical polarization: 00 =yE  

• Circular polarization: ;2/argarg 00 π±= xy EE  yx EE 00 =  

• Elliptical polarization: all other cases when the amplitudes are constant in time. 
 

An example of various pure polarization states of light is shown in figure 5 which displays 
light such that for various values of yx EE 2= xy EE 00 argarg −=ε . As we sweep the phase 
difference between the horizontal and vertical components, the polarization state evolves from 
linear to almost circular and back to linear. 



 
 
 When the amplitude of the light wave changes in time1, the polarization state is called 
mixed. For example, light from a light bulb or a flame is generally randomly polarized since the 
phase of a given component of light fluctuates randomly. Randomly polarized light is also called 
natural or unpolarized.  

A polarizer is an optical instrument which removes the field polarization component 
perpendicular to a certain direction, the polarizer’s transmission axis. If the reference frame is 
chosen such that the transmission axis is along the x axis, the wave (1) transmitted through the 
polarizer emerges as 
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Consider a situation when a linearly polarized wave of amplitude E  is incident on a 

linear polarizer with the transmission axis oriented at angle θ  to the polarization of the wave. In 
the reference frame of the polarizer, we have  

 
    θcosEEx = ; 

θsinEEy = . 
 

Only the x-component is transmitted through the polarizer. Since the intensity of the wave 
is proportional to the square of the amplitude of the electric field, the intensity transmitted by a 
linear polarizer which makes an angle θ  with the transmission axis will be proportional to the 
square of the cosine of the angle. This is Malus’ law: 
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We have seen that any polarized light may be represented as the superposition of 

horizontally (x) and vertical (y) polarized waves with the type of polarization depending of the 
phase differences between the two waves. In order to engineer a given polarization of light, it 
would then be beneficial to manipulate the phase difference in a predictable way. This is 
accomplished using birefringent materials, which retard the phase of one polarization 
component of the wave with respect to the other. A typical wave plate is a birefringent crystal cut 
so that the extraordinary axis (polarized parallel to the axis of anisotropy) is parallel to the 

                                                      
1 Strictly speaking, a wave with mixed polarization cannot be called a plane wave. A plane wave 
must be completely monochromatic; its amplitude cannot change in time. 



surfaces of the plate. When the extraordinary index of refraction is smaller than the ordinary, the 
extraordinary axis is called the fast axis and the ordinary axis is called the slow axis. Light 
polarized along the fast axis propagates faster than light polarized along the slow axis. Thus, 
depending on the thickness of the 
crystal, light with polarization 
components along both axes will emerge 
in a different polarization state (figure 6).  

A half-wave plate introduces a 
relative phase shift of 2/λ , or 

ππ =2/2  radians. In the reference 
frame with the y axis oriented along one 
of the half-wave plate’s axes, a plane 
wave (1) transmitted through the wave 
plate becomes  
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For example, when a half-wave plate is 
placed at an angleθ  with respect to a 
incoming linearly polarized wave, the plane of polarization will be rotated by θ2  as in figure 7. 
For this reason, half-wave plates are sometimes called polarization rotators.  

 
In a similar fashion, the quarter-wave plate retards a component of the polarization 

along the fast axis by 2/π  radians. In analogy with equation (6), we write for a wave transmitted 
through a quarter-wave plate with its slow axis along the y-axis of the reference frame 
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When the plane of polarization is parallel to one of the axes, a waveplate has no effect on linearly 
polarized light, but when incident linearly polarized light is 45° to the quarter-wave plate, the one 
of the horizontal/vertical components of the polarized light receives the 2/π  phase shift and 
circular polarized light emerges.  
 Certain materials possess a property called optical activity. When linearly polarized light 
is incident upon an optically active material, it emerges as linearly polarized light but with its 
polarization angle different from the original. The angle β of rotation of a wave that has 
propagated through an optically active material is proportional to the distance L  of travel. The 
proportionality coefficient, usually measured in degrees/mm, is called the material’s specific 
rotation. In this experiment, we study the optical activity of quartz. 
 A convenient mathematical description of the polarization state are the four Stokes 
parameters, which are sufficient to fully classify a polarization pattern. In fact, only three 
parameters are needed to characterize the polarization of light, since the first parameter merely 



states the total intensity of the light. Suppose that we measure the components of light that are 
polarized horizontally, vertically, +45°, -45°, right circular, and left circular which are denoted 

 respectively. The Stokes parameters are then given by: LRVH EEEEEE ,,,,, −+
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Note that the time-averaged magnitudes are simple the intensities of the given wave and that 
each Stokes parameter tells us something specific about it.  gives the total intensity of the light 

and  gives us the difference between the portions of the wave which are horizontally or 
vertically polarized – positive being horizontal and negative being vertical. Along the same 
lines tells us the difference between the components of light which are polarized at +45° or 

−45°, and  gives us the difference of the circular components. Since the first Stokes parameter 
gives the total intensity, we must have that 
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and equality hold for completely polarized light. For partially polarized beams we have a strict 
inequality, the extreme being natural light which has 0321 === SSS . Often Stokes 
parameters are grouped together as a vector, forming a Stokes vector. A general Stokes vector 
is given as 
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The advantage of this form is that 
many optical elements may be then 
represented as operators in the form 
of a 4x4 matrix, known as a Mueller 
matrix. The Mueller matrices for 
some optical components are listed in 
table 1. 
 
The resultant light emerging from an 
optical element is then calculated by a 
normal matrix multiplication. As an 
example suppose we send light in at  
+45° to a quarter wave plate with its 
fast axis horizontal. The emerging 
Stokes vector is then given by 
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which is seen to be right circular polarized light. 
 An alternative description of polarization is given by the Jones vectors and Jones 
matrices. A general Jones vector is given by: 
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where yx ϕϕ ,  are the phases of the x and y components of the polarized light2. The Jones 
formalism has the advantage of having only two components and therefore a simpler 
representation, but the disadvantage of not being able to describe mixed polarization states. For 
example, horizontally polarized light has 00 =yE  so only the first component of the 
corresponding Jones vector is zero. Since the Jones vectors are normalized to have magnitude 
1, the Jones vector is then ( )T

HE 01=
v

. As a second example, recall that circularly polarized 
light has the y-component of light 2/π out of phase with the x-component, so that the Jones 
vector is: 
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where we’ve noted that for circular light, 000 EEE yx ≡=  and we’ve applied the normalization in 
the last step. In a similar fashion to the Mueller matrices, the Jones matrices are used to 
represent optical elements. Some Jones matrices are shown in table 2. 
 

 
 
 
                                                      
2 Jones vectors are completely analogous to the way single-photon polarization states and states 
of a spin-1/2 particle are represented in quantum mechanics. 



 
  
Procedure 
 
The first step is to calibrate the equipment used in this experiment. The polarizers and wave 
plates will have a dial from 0° to 359°, but will not in general be configured such that the 
transmission axis or the fast axis corresponds to 0°. If however, we know how the instruments 
are calibrated with respect to one another, we can correct for any differences in between them. 
 
1. First, select a polarizer P1 as the reference. Place P1 at 0° in front of the laser and place the 
other linear polarizer P2 between P1 and the detector3. Rotate P2 in the neighborhood of 90° 
determine the angle at which transmitted intensity is minimized. This corresponds to the 90° of 
P2. 
 
2. Next, calibrate the quarter-wave plates: place P1 in front of the laser at 0°, and P2 in front of 
the detector at 90° (relative to P1 from step 1) so that there is no light transmitted. Next, place the 
first quarter-wave plate QWP1 between P1 and P2. Rotate QWP1 and notice now that there is 
light present of the detector except at the fast and slow axes of the QWP at which the incident 
linear polarized light is unaffected. Starting around 0° on QWP1 rotate until no light is present. 
This is one of the axes of the QWP. Repeat for the second quarter-wave plate QWP2 and for the 
half-wave plate HWP. 
 
Although you have determined the positions of the waveplates’ optical axes, you do not know 
which of the axes you found are slow, and which are fast. For the HWP, this makes no physical 
difference. For the QWPs, on the other hand, a confusion between the axes will result in a 
confusion between the right and left circular polarizations, which is physically significant. It is 
quite difficult to classify the axes you have found. However, it is possible to find out whether the 
axes you found for the two QWPs are of the same character.  
 
If the two axes are of the same character (i.e. both fast or both slow), the quarter-wave plates 
superimposed with the axes collinear to each other will act as a single half-waveplate. If they are 
of the opposite character, the waveplate will compensate each other, so the transmitted light is 
unaffected. 
 
To make a test, place P1 in front of the laser at 0°, then the two QWPs with the optical axes at 
45°, then P2 in front of the detector at 90°. If the QWPs make up a half-wave plate, they will 
rotate the polarization by 90°, so almost the entire laser intensity will be transmitted through the 
second polarizer. If they compensate each other, the polarization will remain at 0°, and no light 
will be transmitted. 
 
After this test, turn one of the QWPs by 90°. Now the combined waveplates should act oppositely 
compared to the previous setting. Record your findings. 
 
Note that commercial waveplates never provide retardation precisely as specified, so do not be 
surprised if you do not obtain results exactly as expected. 
 
3. Next perform a test of Malus’ Law. Set the apparatus with P1 at 0° in front of the laser, and 
place P2 between the detector and P1. Starting at 0°, where the maximum light is incident on the 
detector, measure the intensity at the detector for the given angle of P2. Make at least 20 
measurements from 0° to 180°.  

                                                      
3 It may be easier (and more precise) to determine the minimum transmission angle by observing 
the laser beam on a card rather than measuring it with the detector. You can decide which 
technique is better. 



 Measure the background light of the room by completely blocking the laser. Subtract this 
value from each of your measurements. Normalize your readings by dividing each measurement 
by the normalized maximum. Make a plot of normalized intensity as a function of polarizer angle. 
On the same graph, plot the theoretical curve given by equation (5). 
 
4. Measure the Stokes parameters of the laser used in this lab. To this end, we must know , 

, , , , and . In order to measure , place a linear polarizer in front of the detector 

and measure the intensity at 0° and 180°, averaging the results. Similarly,  is found by making 
measurements at 90° and 270°. Averaging the readings will give you a more accurate value and 
is not essential. and are determined in a similar manner with the polarizer at ± 45°. In 
order to measure the left and right circular polarization intensities, set up a circular analyzer as in 
figure 8, with the quarter wave plate at 0° and the linear polarizer at 45° for  and 

respectively.  Using equations 6, calculate the Stokes parameters of the laser light. Verify 
equation 7, and give a brief description of the light produced by the laser. 
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5. Produce light polarized at 0° with respect to P1. Insert the half-wave plate at 30° in between P1 
and the detector. Measure the Stokes parameters of the resultant light. 
 
6. Produce circularly polarized light as follows: place P1 at 45° in front of the laser followed by 
QWP1 at 0°. Measure the Stokes parameters of the resultant light.  
 
7. Place the quartz rotator in the slide-holder. Sending in horizontally polarized light, measure the 
resultant Stokes parameters.  
 
8. Given wave plates and polarizers, it is possible to engineer arbitrary polarization states. Here, 
you are asked to produce elliptically polarized light with the semi-major axis horizontal and the 
ratio to semi-major to semi-minor axes being 2:1. The basic idea of this is seen in figure 5. We 
first create linearly polarized  light with 2/1/ =xy EE  and then create a phase difference with a 
quarter wave-plate in a given component to produce elliptically polarized light.  
 Starting with horizontally polarized light, use a half-wave plate to rotate the plane of 
polarization to the correct angle (given by /2). Next place a quarter-wave plate with 
its fast axis horizontal in between the HWP and the detector.  

)2/1(tan 1−

 Calculate the theoretical Jones vectors and Stokes parameters for the resultant light. 
Measure the Stokes parameters as in steps 4 – 7 and compare your measured result with your 
theoretically calculated values. 
 
 To be handed in with your report 
 

1. (if this material has been covered in class) Verify that the matrices in Table 1 are correct.  
 



2. A table giving the calibration details of your equipment along with the equipment number. 
 

3. Your observations in step 2.  
 

4. Your plot of Malus’ law data with error bars obtained in step 3 with the theoretical curve 
on the same graph. 

 
5. Explain why the setup in figure 8 makes a circular analyzer. 

 
6. The Stokes parameters of the laser. What can be said about the polarization of the laser? 

 
7. The Stokes parameters of the rotated light from step 5. Compare to your result in step 4. 

 
8. A sketch of your setup in step 6, accompanied by the measured stokes parameters. 

 
9. The resultant stokes vectors from step 7. How does the quartz affect the linearly 

polarized beam? Are your observations consistent with the accepted value for quartz at 
the He-Ne laser wavelength of about 19 degrees/mm? Is this dextrorotationary 
(clockwise) or levorotationary (counterclockwise) quartz? 

 
10. A verbal description of how your polarization state was created in step 8. A calculation of 

the expected Jones vector for the resultant light. A calculation of the expected Stokes 
vector for the resultant light. The raw experimental data and the Stokes vector obtained 
in step 6. How does it compare with your calculation? 


