
Fraunhofer Diffraction 
 
 
 Equipment 
 
 Green laser (563.5 nm) on 2-axis translation stage, 1m optical bench, 1 slide holder, slide 
with four single slits, slide with 3 diffraction gratings, slide with four double slits, slide with multiple 
slits, pinhole, slide containing an etched Fourier transformed function, screen, tape measure. 
 
 Purpose 
 
 To understand and test Fraunhofer diffraction through various apertures. To understand 
Fraunhofer diffraction in terms of Fourier analysis. To gain experience with laser optics.   
 
 Theory 
 
 Suppose, as depicted in Figure 1, that a laser is shone upon a small slit.  The light 
passing through the slit is then allowed to fall on a screen, positioned at some distance, L, from 
the slit, with its plane perpendicular to the path of the light's propagation.  If light traveled in 

straight lines one would expect the 
screen to display a single image of 
the slit with the rest of the screen in 
shadow.  For a sufficiently small slit, 
however, it is found that this is not 
the case. Instead, a diffraction 
pattern is observed, consisting of a 
central bright fringe along the slit-
screen axis with alternating dark and 
bright fringes on either side of the 
central fringe.  It is evident, based 
on this observation, that light does 
not travel in straight lines since 
bright fringes are seen where 

shadow would be expected. It follows then, that light has the property of being able to "bend" 
around corners, a property called diffraction. 
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 In order to examine diffraction we will assume that light 
behaves like a wave. With this assumption one can imagine a 
beam of light to consist of a series of wave fronts aligned 
perpendicular to the direction of light propagation. As shown in 
Figure 2, a ray can be drawn perpendicular to the wave fronts, 
indicating the direction of light propagation. This wave model of 
light allows us to make use of Huygens' principle which claims 
that any point on a wave front can itself be regarded as a point 
source emitting circular wave fronts. Applying this principle to the 
situation under consideration, every point located in the slit acts 
as a point source. Consequently, the diffraction pattern must be 
the result of the constructive and destructive interference of the various waves generated by 
these point sources. 
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 Diffraction phenomena are usually separated into two different types called Fraunhofer 
and Fresnel diffraction. The latter describes the near-field pattern observed when the screen is 
placed close to the slit (i.e. at small values of L), so the wave effects make only a small correction 
to the geometric shadow of the aperture. Fraunhofer diffraction, on the contrary, describes the 
diffraction pattern observed in the far field (i.e. at large values of L) where geometric optics is 



 

Figure 3 

completely inapplicable. We will postpone Fresnel diffraction until a later 
date, and concentrate here on the far-field case. 
  
 Consider a general aperture illuminated by light as in figure 3. In 
the plane of the aperture, perpendicular to the plane-wave propagation 
axis , the electric field is given by: ẑ
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where reflects the geometry of the aperture. We treat this field according to Huygens’ 
principle as an antenna (extended oscillator) that generates secondary waves that form the 
diffraction pattern. To calculate this pattern, we re-express the oscillator as a linear combination 
of infinite plane antennas:  
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where each antenna is characterized by a pair of wave vectors   and is the 
inverse Fourier transform of the aperture function: 

),( yx kk ),( yx kkf

  ∫ ∫
∞

∞−

∞

∞−

−−− =ℑ= dxdyyxfeyxfkkf yikxik
yx

yx ),(
2
1)},({),( 1

π
.  (3) 

Each antenna in Eq. (2) generates a plane wave  
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 The field produced by each plane wave antenna propagates in the directions defined by 
angles ),( yx θθ  with respect to the z axis, such that 
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We continue our treatment within the so-called paraxial approximation, where we assume 

that , so yxz kkk ,>>
λ
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=≈ kk z , independent of and . The paraxial approximation also 

implies that 

xk yk

xx θθ sin≈  and yy θθ sin≈ . If the diffraction pattern is observed on a screen very 
far away from the aperture (i.e. in the far-field approximation relevant to the Fraunhofer 
diffraction), we can assume that the irradiance at some point  on the screen will be 
determined by the electric field of the plane wave propagating at angles  
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with respect to the z axis. Combining Eqs. (5) and (6) we find for the far field amplitude 
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In other words, in the paraxial approximation the far-field diffraction pattern is just a scaled 
inverse Fourier transform of the aperture. The intensity of the diffraction pattern is found 
according to 
 

2
)','()','( yxEyxI = ,    (8) 

 
 Consider now a single slit, with the aperture function as described in figure 4. The vertical 
dimension of the slit is sufficiently large so that we 
may treat the problem as one-dimensional. The 
aperture function here is the “top-hat” function: 
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We can then evaluate the Fourier transformation of the aperture function to find the electric field 
at a point on a screen in the far-field regime 
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or, using equation (4) for and defining: xk
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we have: 
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 Recalling that the irradiance at x’ is just the time-averaged electric field at that point, we 
can write: 
 

I(θ) = I0 [sinc(β)]2,     (12) 
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Figure 5 displays the 
resultant irradiance 
pattern. Note that 
equation (12) will have minima whenever 

πβ n= , for all non-zero integers n 

(recall that 1sinlim
0

=
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n
n

). Taking the 

derivative of (12) and setting it equal to 
zero, we see that sinc β  reaches maxima 
whenever .tan ββ =  This is a 
transcendental equation, for which some 
roots are listed in Table 1. These values 

may be used, along with equation (10), to find the angular positions of the maxima of the 
refracted beams. 
 
 Fraunhofer Diffraction from a more complicated apparatus can be calculated by using the 
fact that the Fourier transform of the convolution two functions and is the product of 
the individual Fourier transforms: 
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where the convolution of functions and is given by )(xf )(xg
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 For example, the irradiance pattern for a two slits separated by a distance b, with each 
slit having width a may be evaluated using (13) as the convolution of two Dirac delta functions 
and a single slit (Figure 6.)  
 

 
 
Using equation (13): 
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Using our previous result for the single slit and equation (16), we conclude that  
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where the constant of proportionality is unimportant. We see that the single-slit diffraction pattern 
sinc2(kxa/2) is now modulated by a finer pattern cos2(kxb/2) due to the two-slit diffraction. The 
distance between the maxima of this pattern is given by  

πm
bkx =

2
  for ,...2,1,0 ±±=m     

or, according to Eq. (4),   
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or simply    
 

λθ mb =sin .      (21) 
 
The same analysis applies to many slit apertures and in more generality, to an arbitrary collection 
of similar apertures.  

When the number of equidistant slits further increases, the maxima of the diffraction 
pattern remain at the same positions defined by Eq. (21), but become sharper. An extreme case 
of such an arrangement is a diffraction grating – a repetitive array of slits (or obstacles). 
Because of their dispersive properties, gratings are commonly used in monochromators and 
spectrometers. The first artificial diffraction grating was made around 1785 by Philadelphia 
inventor David Rittenhouse, who strung hairs between two finely threaded screws.  
 

 
 
 



As mentioned, the diffraction grating will create a number of angularly separated maxima, with the 
angle of diffraction determined by the wavelength of light. The angular position of the 

maximum of the diffracted beam can be obtained by performing the inverse Fourier transform 
of the grating as illustrated in figure 7. An infinite periodic grating can be considered to be the 
convolution of a Dirac comb function (an infinite periodic array of delta functions) and a single slit. 
The Fourier transform of the Dirac comb function of period d is also a Dirac comb function of 
period 2π/d. The  maximum is thus given by the equation 
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from which we find the condition for the maximum  
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in analogy to Eq. (22). 

 

 
 The above treatment is valid for an infinite grating, which produces infinitely sharp 
diffraction maxima. In a realistic experiment, the grating (more precisely, the illuminated area of 
the grating) is finite. To find the Fraunhofer diffraction pattern from such a grating, we notice that 
its aperture function equals to that of an infinite grating times that of a single slit (figure 8). The 
resultant far field image is then the convolution of the irradiance pattern for a single slit and that of 
an infinite grating, and the width θδ sin  of a given peak is found according to Eqs. (10) and (11): 
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w being the grating width.  

Illuminating a greater portion of the grating will generate sharper peaks. This is important 
since gratings are typically used to separate light of different wavelengths. As mentioned, a 
property of the diffraction grating is that the angle of deviation depends on the wavelength of the 
incident light. However if two wavelengths differ by very little, so will their angular separation. If 
the peaks of each diffracted beam overlap too much, the resultant image will appear as a single, 
brighter peak (see figure 9). If minλ∆  is the smallest possible difference in wavelength which 



allows for the identification of individual peaks (known as the limit of resolution), we define the 
chromatic resolving power of the diffraction grating as: 
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In order to have a high 
resolving power, we wish 
to increase the effective 
width of the grating, thus 
making the diffraction 
peaks sharper. Therefore, 
for a diffraction grating, it 
is advantageous to 
illuminate as large an 
area as possible.  
 
 Two spectral 
lines separated by an 
interval ∆λ produce two 

diffraction peaks whose separation θsin∆ can be found according to Eq. (22): 
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In order to resolve these lines, their separation θsin∆  should not exceed the individual peak 
width given by Eq. (23). We find 
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The resolution of the grating in the first diffraction order equals the number of lines 
illuminated. 

 
Figure 10 shows the experimental arrangement that will be used to study diffraction 

patterns.  The laser, mounted on the optical bench by means of the two-axis translation stage, 
shines on the slide holder which holds one of the various diffraction 
slides or gratings. The translation stage is used to accurately adjust the x 
and y position of the laser. The resulting diffraction pattern is observed 
on the screen.  
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In this experiment, it is frequently required to measure the angle of a diffracted beam by 
measuring the distance from the aperture to the slide. From basic trigonometry (figure 11) the 
sine of the diffracted angle may be calculated from the displacement x  of the pattern from the 
primary (undiffracted) beam as follows: 
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 Experimental Procedure 
 
1.  Arrange the equipment so that the laser is pointed at a piece of blank paper taped to the wall 
with the slide holder positioned quite close (≤ 5.00 cm) to the laser. Throughout this experiment it 
is important to remember that looking directly into the laser can cause retinal damage. As a 
consequence the optics bench should be positioned so that no one is working in the path of the 
laser. 

2.  Using a tape measure, determine the distance from the grating to the wall. 
 
3. Using equations (10) and (12) calculate the values for the maxima and minima of the single slit 
diffraction pattern for the slit widths of 0.02 mm, 0.04 mm, 0.08 mm, and 0.16 mm. 
 
4.  Place the slide consisting of four single slits with openings of 0.02 mm, 0.04 mm, 0.08 mm, 
and 0.16 mm in the slide holder. Adjust the two-axis translation stage so that the beam of the 
laser passes through the largest slit. Sketch the resultant intensity pattern, mark the central 
maximum as x = 0 cm and measure the distance from each maximum to the central fringe. 
Repeat the process for the remaining three slits. Compare your theoretical results obtained in part 
3 to your experimental data. 
 
5. Replace the single slit slide with the slide consisting of four double slits of varying width and slit 
spacing. The individual spacing of the maxima may be too small to measure accurately, but the 
distance between three or four maxima is easily measurable. Make a sketch of the resultant 
pattern and measure the distance from the central fringe to every four or so fringes for as many 
fringes as possible. Compare the resulting diffraction pattern to the pattern obtained for the single 
slit and with the theoretical prediction (19). 
 
6. Replace the double slit slide with the multiple slit slide consisting of four multiple slit patterns 
with the same width and spacing.  Compare the resulting diffraction pattern and note, qualitatively, 
how the number of slits affects the diffraction pattern. 
 
7. Replace the multiple slit slide with the slide consisting of three diffraction gratings.  Make sure 
the grating is positioned perpendicular to the optical axis.  This can be accomplished by twisting 



the slide holder so that the distance between adjacent maxima of the diffraction pattern is 
minimized.  Adjust the two-axis translation stage so that the laser is incident upon the grating 
ruled with 2400 lines/inch.  (1 inch = 2.54 cm).  
 
8. Using the tape measure determine the distance, L, between the central maximum displayed on 
the wall and the diffraction grating.  For at least six maxima on one side of the central maximum 
measure the displacement, x, from the central maximum. To the best of your ability, measure the 
diameter of the beam incident on the wall. Repeat for the remaining two gratings. 
 
9. Plot a graph of sinθ versus m with error bars for each order m you have measured. From the 
slope of the best fit line, determine the wavelength of the laser with error and compare to the 
accepted value, printed on the laser. 
 
10. For several diffraction orders, use the measured peak diameter to determine the resolution of 
the grating (i.e. if the grating were illuminated by another laser with a slightly different wavelength, 
how large does the wavelength difference need to be in order to produce a distinct diffraction 
maximum?). Make an order-of-magnitude estimation of the diameter of the grating area 
illuminated by the laser and make a prediction for the grating resolving power from Eq. (24). Are 
the two values consistent? 
 
11. Restrict the diffraction grating field with the 0.16 mm slit and repeat step 9. 
  
12. Replace the diffraction grating with the pinhole slide and sketch the resultant pattern.  

12a. (Bonus) Derive the Fourier transform of a circular aperture and compare to sketch. 
 
13. (Bonus) Place the slide upon which an inverse Fourier transform of a grid is etched in the 
holder and describe the resulting pattern. 
 
 
      To be included with your lab write-up 
 

1. Values for the distance L to the wall at all points in the experiment. 
 

2. Your calculation for part 3. 
 

3. Values for positions of maxima and sketches of patterns for parts 4 and 5. 
 

4. Discussion of observations in part 6. 
 

5. Values obtained in part 8. 
 

6. Plot from part 9 along with value for slope and for resolution of laser. 
 

7. Resolution of gratings from part 10 and 11. 
 
8. Resolutions obtained in part 11. 

 
9. A sketch of the diffraction pattern of the pinhole in step 12. 


