
Resolution of the microscope 
 

Equipment 
Laser on a 2-axis translation stage, 1-m optical rail, two lenses (f = 10-15 cm), lens holders, 2 
adjustable slits (vertical and horizontal) on a 2-axis translation stage, screen, wire, tape measure. 

Purpose 
To understand and test Abbe’s theory of microscope resolution. To understand geometric optics 
as the limiting case of physical optics. 

Abbe’s theory 
Any imaging system has a finite limit of resolution, i.e. capability to generate distinguishable 
images of close objects. The principal reason limiting the resolution is the diffraction of light 
waves. Light rays are restricted by diaphragms and lens edges, leading to each infinitely small 
point being imaged as a diffraction spot of a finite size. Diffraction spots from nearby points may 
overlap with each other and become indistinguishable. The present experiment studies the 
diffraction resolution limit of a microscope objective.  

The theory of microscope resolution was developed by German physicist Ernst Karl Abbe (1840 – 
1905). Let us consider the simplest microscope, in which an object, located in the plane P1 close 
to the focal point of the objective lens, generates a real, magnified, inverted image on a screen P2 
(Fig. 1). Suppose the object is a periodic grating, illuminated by coherent light. If the period of the 
grating is d, the period of its geometric image is  
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where s  and  are, respectively, the distances from the lens to the object and the image. 

Abbe considered two stages of the rays’ propagation from the object to the image. In the first 
stage, a pattern is formed in the back focal plane F of the objective. This pattern is considered as 
a source of secondary wavelets according to the Fresnel-Huygens principle. These wavelets form 
the image of the object. 

The pattern in the back focal plane of the objective is the Fourier image of the object. To see this, 
let us Fourier decompose the light wave transmitted by the object  
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and x  is the transverse coordinate in the object plane P1 (we neglect the other transverse 
coordinate, y , for the time being). Each Fourier component of the object will generate a plane 
wave  
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with respect to the axis z of propagation, such that 
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The objective lens will focus this wave into a single point θsinfx =′ , where  is the focal 
length of the lens. 
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Fig. 1: Abbe’s theory of microscope resolution 

Now let us remember that the object is a grating. The diffraction maxima are produced at angles 

 

mθ defined by the condition λθ md m =sin . The picture in plane F will thus consist of equidistant 
ht dots of unequal intensities, po  at locations 
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d  being the grating period. Secondary wavelets, produced by these coherent sources, will 
int

these diffraction maxima 

pen the diaphragm slightly and position it asymmetrically, so that the zeroth and one 

erfere with each other, producing an image of the grating in plane P2. 

Suppose now that we place a diaphragm into the F plane, so some of 
are blocked and do not participate in the formation of the image. Let us first consider an extreme 
case, when only the zeroth diffraction order is transmitted. The associated wavelet will not have 
anything to interfere with, so in plane P2 you will only see a bright spot; there will be no image of 
the grating. 

Now let us o
of the first diffraction orders can pass. These diffraction orders, which in plane F have a form of 
two bright dots situated at distance  dfD /λ=  from each other, will form a “two-slit” 
interference pattern in the P2 plane. The period of this pattern is  
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Expressing s′  through s  and f  using the thin lens formula, we find that dd ′=′
~ ′, where d  is 

e

 diffraction in the F plane is sufficient 

the period of the grating’s geom tric image given by Eq. (1). 

We see that the transmission of the zeroth and first orders of
to convey information about the most basic features of the image – in our case, the grating period. 
On the other hand, the double-slit interference pattern is sinusoidal, so it does not represent any 
finer details about the structure, such as e.g. sharp borders between bright and dark sections of 
the grating, are represented in the image. These details are conveyed by higher order diffraction 
maxima, which create narrower interference fringes in the P2 plane. 



Note also that if we block the first order diffraction maximum in plane F, but transmit the zeroth 
and second order maxima, we will again see a sinusoidal interference pattern in P2, but with the 
period . 2/d ′

Resolution of the microscope 
We see from the above that in order for the microscope to resolve object’s details of size d , its 
aperture size must be at least  

  dfA /λ= .  (3) 

In an actual microscope, there is no artificial aperture in the F plane; its role is played by the finite 
diameter of the objective lens. However, if the object is close to the lens’s front focal plane (as in 
the real microscope) the rays after the lens are almost parallel to the z axis, so a different location 
of the aperture does not compromise the above argument. 

It is sometimes convenient to express the above result in terms of the angular aperture maxθ  (Fig. 
1). In the paraxial approximation, and remembering that the object is close to the lens’s focus, we 
can write A /max ≈ fθ . A microscope with a given angular aperture can resolve objects of size 

./ maxλ θ≥d    

It is clear that the maximum possible value of the angular aperture is on the order of 1, so the 
resolution limit of any optical microscope is on the order of the wavelength. 
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Fig. 2: experimental setup 

Experimental setup 
We use a periodic square wire mesh as our microscopic object. It can be viewed as two one-
dimensional gratings placed perpendicular to each other. The diffraction picture in plane F will 
form a square pattern with the maxima located at ( )/,/(), dfndfmyx nm ′ λ λ=′ , where m  and 

 denote, respectively, vertical and horizontal diffraction orders. We use a combination of a 
vertical and horizontal slits to independently block diffraction orders in each dimension. In this 
way we can, for example, transmit only the zeroth diffraction order with the vertical slit, and have 
the horizontal slit fully open. The image in the P2 plane will then show a grating with only 
horizontal lines present. 

n

The focal length of the objective lens L1 has to be chosen relatively large, so the diffraction 
pattern in plane F is clearly visible. This means that the magnification of the microscope is limited 
and the image in plane P2 is difficult to see. We address this issue by constructing a second 
magnification stage of the microscope, placing a second lens L2 after P2 and projecting a 
magnified image of this plane onto the wall (plane P3). The setup is shown in Fig. 2. 

Experimental procedure 
1. Measure the focal lengths of both lenses with a precision of better than ±0.5 cm. Feel free to 

choose any procedure for this measurement 



2. Place the laser at the end of the optical rail. Write down its wavelength. Align the laser beam 
parallel to the rail. Set the mesh with the largest available period onto the optical rail 
immediately behind the laser. Place the screen onto the rail, 15-20 cm away from its other 
end. Place L1 (it is advisable to use the lens with a larger focal length here) 15-20 cm away 
from the mesh.  

3. Adjust the position of  L1 to generate a clear magnified image of the mesh on the screen. If 
you have difficulty identifying the image, try to minimize the size of the bright spot from the 
laser on the screen.  

4. Write down the position of the screen. Remove it. Place lens L2 at the far end of the rail. 
Adjust its position to produce a clear image of the mesh on the wall (1-2 m away from the rail). 
The image should consist of bright squares, arranged in a square pattern. You should see 
sharp borders between bright and dark regions of the image. 

5. Measure ssss ′′′′′′ ,, .  Verify them to be consistent with the focal lengths measured in step 1 
(use the thin lens formula). Measure the mesh period in the image. Determine the overall 
magnification of your microscope by comparing with the period value printed on the mesh. 
Verify consistency with the values of sss

,

s ′′′′′′ ,,, . 
6. Replace the mesh by the one with the smallest period. Observe the Fraunhofer diffraction 

pattern in the back focal plane F of L1. 
7. Place the two slits in plane F. Fully open both of them. Center the slits on the diffraction 

pattern.  
8. Close both slits so that only the (0, 0) diffraction order is transmitted. Observe the image on 

the wall. 
9. Fully open one of the slits so diffraction orders (0, n) are transmitted. Observe the image on 

the wall. Repeat with the other slit. 
10. Open and reposition one of the slits to transmit the zeroth and one of the first diffraction 

orders (the width of the other slit does not matter). Observe the periodic pattern on the wall. 
Measure the period and compare it with that measured in step 5. Gradually open the slit and 
observe the details reappear in the image. 

11. Position the vertical slit to transmit the zeroth, one of the first, and one of the second 
diffraction orders. Block the first diffraction order with the wire supplied. Observe the periodic 
pattern on the wall. Measure the period and compare it with that measured in step 5. 

12. Rotate the mesh by 45˚. Open one of the slits, close the other to transmit only diffraction 
orders (n, n). Measure the period of the pattern in the image plane. 

13. For each mesh available, find the minimum width of one of the slits that (barely) allows 
observation of some periodic structure in the image.  In order to get an accurate 
measurement, you should adjust not only the width, but also the position of the slit. Be sure to 
align each mesh parallel to the slit edges. Repeat each measurement several times to 
estimate the measurement uncertainty. 

To be included with your lab write-up 

1. Derivation of Eq. (2) and a proof that dd ′=′ . 
~

2. Description of the procedure and the method of estimating the error in measuring the focal 
lengths of lenses (Procedure step 1). 

3. Measurements and calculations for the step 5. 
4. Measurements, observations (including image descriptions), and explanations for steps 6-12. 
5. Plot of the aperture sizes obtained in step 13 versus the inverse mesh period (as printed on 

the mesh). Include the uncertainties and a theoretical line according to Eq. (3).  
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