University of Calgary Winter semester 2017

PHYS 443: Quantum Mechanics I

Homework assignment 6

Due April 12, 2017

Problem 6.1. For the displacement operator $\hat{D} \equiv \hat{D}_X(X_0, 0) = \hat{D}_{XP}(X_0, 0)$:

- a) Find $\hat{D}^{\dagger}\hat{a}\hat{D}$ and $\hat{D}^{\dagger}\hat{a}^{\dagger}\hat{D}$;
- b) Find [a, D̂] and [a[†], D̂];
 Hint: apply D̂ to both sides of the result of part (a).
- c) Find the Fock decomposition of the displaced single-photon state $\hat{D} |1\rangle$. **Hint:** $|n\rangle = (\hat{a}^{\dagger})^n |0\rangle / \sqrt{n!}$.

Problem 6.2. Calculate the reflection and transmission for scattering on a delta-potential $V(x) = W_0 \delta(x)$, with the energy E > 0. Compare your results with those obtained from Eqs. (3.80) in the lecture notes for an infinitely thin and high rectangular potential barrier $(L \to 0, V_0 = W_0/L)$.

Problem 6.3. Consider coherent superpositions of coherent states $|S_{\pm}\rangle = \mathcal{N}_{\pm}(|\alpha\rangle \pm |-\alpha\rangle)$, where \mathcal{N}_{\pm} are normalization factors and the alplitude α is real and positive¹.

- a) Find \mathcal{N}_{\pm} .
- b) Find the matrices (wavefunctions) of these states
 - in the Fock basis;
 - in the position basis;
 - in the momentum basis.
- c) Show that, for small amplitude α , these states can be approximated, up to the first two terms in the Fock decomposition, by states

$$\begin{aligned} |S_{+}\rangle &\approx \hat{S}(r_{+}) |0\rangle; \\ |S_{-}\rangle &\approx \hat{S}(r_{-}) |1\rangle \end{aligned}$$

and find $r_{\pm}(\alpha)$ for which the approximation is optimal.

Problem 6.4. Consider the following state two harmonic oscillators:

$$\left|\psi\right\rangle = \alpha \left|0,0\right\rangle - \beta \left|1,1\right\rangle,$$

where α and β are real; $\alpha^2 + \beta^2 = 1$.

a) At which values of α and β does this state exhibit two-mode position-squeezing, i.e. the variance of $\hat{X}_A - \hat{X}_B$ is lower than that of the double-vacuum state?

¹This state is dubbed the "Schrödinger kitten" because it is a superposition of two "classical" and potentially macroscopic coherent states, and yet is highly nonclassical. It is a subject of intense research because, by constructing such states with increasingly high amplitudes α , we may be able to find the boundaries of quantum physics — see Sec. 2.4.3 in the notes.

b) Answer the same question for the observable $\hat{P}_A - \hat{P}_B$.

Problem 6.5. A harmonic oscillator, initially in the vacuum state, evolves under the Hamiltonian $\hat{H} = \hbar r \hat{X}^2$, with a real and positive r, for time t.

- a) Express the final quadrature operators $\hat{X}(t)$ and $\hat{P}(t)$ through the initial ones $\hat{X}(0)$ and $\hat{P}(0)$.
- b) Find the mean and variance of the general quadrature observable $\hat{X}_{\theta}(t) = \hat{X}(t) \cos \theta + P(t) \sin \theta$ for arbitrary angle θ .
- c) Which angle θ_0 corresponds to the lowest variance of that observable? **Hint:**

$$sin(2x) = 2 sin x cos x;$$

 $cos(2x) = 1 - 2 sin^2 x = 2 cos^2 x - 1$

d) Write the uncertainty principle for the quadratures \hat{X}_{θ_0} and $\hat{X}_{\theta_0+\pi/2}$ and verify explicitly that it holds. Hint:

$$\sin(\arctan x) = 1/\sqrt{1+x^2};$$
$$\cos(\arctan x) = x/\sqrt{1+x^2}.$$

- e) Find the Fock decomposition of the state $|\psi\rangle = e^{-\frac{i}{\hbar}\hat{H}t}|0\rangle$ for $rt \ll 1$ up to the two-photon term.
- f) Find the variance of \hat{X}_{θ} in that state up to the first term in rt and verify consistency with part (b).

Hint: It may be convenient to express \hat{X}_{θ} in terms of \hat{a} and \hat{a}^{\dagger} .

Parts (a)-(d) should be answered in the Heisenberg picture, parts (e)-(f) in the Schrödinger picture. Parts (d)-(f) are for extra credit.