University of Calgary Winter semester 2017

PHYS 443: Quantum Mechanics I

Homework assignment 2

Due February 7, 2017

Problem 2.1. Consider an operator \hat{A} that performs the following transformation.

$$\hat{A} |H\rangle = i |H\rangle + 3 |V\rangle; \tag{1}$$

$$\hat{A} \left| R \right\rangle = \sqrt{2} \left| V \right\rangle. \tag{2}$$

- a) Find $\hat{A} | V \rangle$. Write your answer in the Dirac notation in terms of states $| H \rangle$, $| V \rangle$.
- b) Express \hat{A} in the Dirac notation in terms of outer products of states $|H\rangle$, $|V\rangle$.
- c) Express \hat{A} in the matrix notation in the canonical basis.
- d) Find the matrix of \hat{A} in the diagonal basis using $A_{ij} = \langle v_i | \hat{A} | v_j \rangle$.
- e) Express \hat{A} in the Dirac notation in terms of outer products of states $|+\rangle$, $|-\rangle$. Then express the diagonal polarization vectors in terms of the canonical polarization vectors. Simplify the result and check it to be identical to that of part (c).
- f) Is \hat{A} Hermitian? If not, what is its adjoint?

Problem 2.2. The operator associated with the quarter-wave plate with the optic axis oriented at angle α in the basis $\{|\alpha\rangle, |90^{\circ} + \alpha\rangle\}$ has matrix

$$\hat{A}_{\text{QWP}}(\alpha) \simeq \left(\begin{array}{cc} i & 0\\ 0 & 1 \end{array} \right);$$

Convert this matrix to the canonical basis using the method of inserting identity operator.

Problem 2.3. Using operator algebra, show that a quarter-wave plate oriented at any angle, when applied to a circular polarization state, generates a linear polarization state.

Problem 2.4. Operator \hat{A} has the following matrix in the canonical basis.

$$\hat{A} \simeq \left(\begin{array}{cc} 9 & 2\\ 2 & 6 \end{array}\right)$$

- a) Present this operator in the form $\hat{A} = v_1 |v_1\rangle \langle v_1| + v_2 |v_2\rangle \langle v_2|$, where $\{|v_1\rangle, |v_2\rangle\}$ is an orthonormal basis. Find v_1, v_2 , as well as the matrices of $|v_1\rangle$ and $|v_2\rangle$ in the canonical basis.
- b) Write the matrices of outer products $|v_{1,2}\rangle\langle v_{1,2}|$ in the canonical basis and verify explicitly that $\hat{A} = v_1 |v_1\rangle\langle v_1| + v_2 |v_2\rangle\langle v_2|$.
- c) Observable \hat{A} is measured in the diagonally polarized state $|+\rangle$. What are the probabilities of possible outcomes?
- d) Calculate the expectation value of the measurement result.

- using the definition of the expectation value from the probability theory;
- using the expression for the quantum mean.

Verify that the results are the same.

e) Calculate the variance of observable \hat{A} in state $|+\rangle$.

Problem 2.5. Consider an apparatus for measuring the photon polarization that has the following properties:

- whenever the state $|\psi\rangle \simeq \begin{pmatrix} a_H \\ a_V e^{i\phi} \end{pmatrix}$ (where $a_{H,V}$ real and non-negative and ϕ is real; $a_H^2 + a_V^2 = 1$) enters the apparatus, it displays "1";
- whenever the state $|\psi_{\perp}\rangle$ enters the apparatus, it displays "-1";
- for photons with polarizations other than the above, it randomly displays one of these numbers with some probabilities.
- a) Find the matrix of $|\psi_{\perp}\rangle$. **Hint:** Look for this state in the form $|\psi_{\perp}\rangle \simeq \begin{pmatrix} b_H \\ b_V e^{i\chi} \end{pmatrix}$
- b) Find the matrix of the observable corresponding to this apparatus both in its eigenbasis and in the $\{|H\rangle, |V\rangle\}$ basis.
- c) For which a_H , a_V and ϕ does this observable become each of the three Pauli operators?