University of Calgary Winter semester 2014

PHYS 443: Quantum Mechanics I

Midterm examination

February 26, 2015, 18:30

Open books. No electronic equipment allowed. Full credit = 100 points. Attempt all problems. Partial credit will be given.

Problem 1 (10). Observables \hat{X} and \hat{P} have commutator $[\hat{X}, \hat{P}] = i$. Find $[X^2 + P^2, X + iP]$.

Problem 2 (15). Measurements of observable \hat{A} in state $|H\rangle$ yield results 0 and 1 with probabilities 1/2 each. Measurements of observable \hat{B} in state $|H\rangle$ yields result 2 with probability 3/4 and result 4 with probability 1/4. It is also known that $[\hat{A}, \hat{B}] = ix\hat{\sigma}_z$. Find the upper bound on the absolute value of x.

Problem 3 (15). The initial polarization state of a photon in the canonical basis is given by $\frac{1}{\sqrt{10}}\begin{pmatrix}1\\3i\end{pmatrix}$. For each of the operations below applied to that state, draw and classify the resulting polarization pattern.

- a) no operation;
- b) a half-wave plate with the optical axis oriented at angle 0;
- c) a half-wave plate with the optical axis oriented at angle $\pi/6$;
- d) a quarter-wave plate with the optical axis oriented at angle 0.

Your plots must show the orientation of the polarization ellipses' major semiaxises and the lengths of both semiaxes.

Problem 4 (20). Schmaser componentsTM manufactures a waveplate which imposes phase difference φ upon the ordinary and extraordinary polarization waves, where φ is as requested by the customer. This waveplate is inserted into a photon's path with its optical axis oriented at angle θ to horizontal. Answer the following questions for any given φ and θ .

- a) What are the eigenstates of the operator \hat{U} of the polarization transformation enacted by this waveplate? How are they transformed by the waveplate?
- b) Write this operator in the matrix form in its eigenbasis. Write the corresponding expression in the Dirac notation.
- c) Write the matrix of \hat{U} in the canonical basis.
- d) Suppose operator \hat{U} corresponds to the evolution under some Hamiltonian \hat{H} for time t_0 . Find the matrix of this Hamiltonian in its eigenbasis as well as the corresponding expression in the Dirac notation. What are the energy eigenvalues?

Problem 5 (15). Alice and Bob share two photons in state

 $|\Psi\rangle = \mathcal{N}(|HH\rangle + 2|HV\rangle - 3|VH\rangle + 4i|VV\rangle).$

Alice performs a local measurement in the diagonal basis.

a) what is the normalization factor \mathcal{N} ?

- b) What are the probabilities of possible outcomes?
- c) What (normalized) state will Bob's photon be remotely prepared in after the measurement in the case of each possible outcome?

Problem 6 (25). An atom is described in some basis $\{|v_1\rangle, |v_2\rangle\}$ by Hamiltonian

$$\hat{H} = \hbar\omega \left(\begin{array}{cc} 1 & 3i \\ -3i & 9 \end{array} \right).$$

- a) Find the energy eigenstates and eigenvalues.
- b) Energy is measured in state $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|v_1\rangle + i |v_2\rangle)$. Find the probabilities to detect each energy eigenvalue, as well as the mean and variance of this measurement.
- c) The atom is initially in state $|\psi_0\rangle$. Find its state $|\psi(t)\rangle$ at arbitrary moment t.