University of Calgary Winter semester 2015

PHYS 443: Quantum Mechanics I

Homework assignment 2

Due February 10, 2015

Problem 2.1. Operator \hat{A} has the following matrix in the canonical basis.

$$\hat{A} \simeq \left(\begin{array}{cc} 41 & -12i \\ 12i & 34 \end{array} \right)$$

- a) Present this operator in the form $\hat{A} = v_1 |v_1\rangle \langle v_1| + v_2 |v_2\rangle \langle v_2|$, where $\{|v_1\rangle, |v_2\rangle\}$ is an orthonormal basis. Find v_1, v_2 , as well as the matrices of $|v_1\rangle$ and $|v_2\rangle$ in the canonical basis. Write the matrices of outer products $|v_{1,2}\rangle \langle v_{1,2}|$ in the canonical basis and verify explicitly that $\hat{A} = v_1 |v_1\rangle \langle v_1| + v_2 |v_2\rangle \langle v_2|$.
- b) Find the matrix $e^{i\hat{A}}$ in the canonical basis. Verify if the result is unitary. Could we predict that the result would be unitary without calculating the exponent?
- c) Consider a measurement defined by operator \hat{A} as an observable. We apply this measurement to state $|R\rangle$. What states will this measurement project $|R\rangle$ upon and what are the associated probabilities?
- d) Calculate the expectation value of the measurement result
 - using the definition of the expectation value from the probability theory;
 - using the expression for the quantum mean.

Verify that the results are the same.

- e) Calculate the variance of observable \hat{A} in state $|R\rangle$.
- f) Calculate the commutator of observables $\hat{\sigma}_x$ and \hat{A}
- g) Write the uncertainty principle for these observables and state $|R\rangle$. Verify that it holds.

Problem 2.2. Consider operators $\hat{A}_{\lambda/2}$ and $\hat{A}_{\lambda/4}$ associated, respectively, with half- and quarterwave plates with their optical axes oriented at arbitrary angle θ to horizontal. First, recall (Sec. C.3) that the waveplates perform the following transformations.

$$|\theta\rangle \to -|\theta\rangle \text{ (HWP) or } |\theta\rangle \to i|\theta\rangle \text{ (QWP)};$$
(1)

$$\frac{\pi}{2} + \theta \Big\rangle \to \Big| \frac{\pi}{2} + \theta \Big\rangle \,. \tag{2}$$

- a) Write operators $\hat{A}_{\lambda/2}$ and $\hat{A}_{\lambda/4}$ in the Dirac notation in terms of $\{|\theta\rangle, |\frac{\pi}{2}+\theta\rangle\}^1$.
- b) Find the matrices of $\hat{A}_{\lambda/2}$ and $\hat{A}_{\lambda/4}$ in the canonical basis by writing the result of part (a) in the matrix form in that basis.

¹In this case, the overall phase in the right-hand side of Eq. (1) does matter. This is because we are interested not only in the transformation of state $|+\rangle$ itself, but in the whole linear operation this transformation defines. To see the effect of the overall phase, you may want to try solving part (a) using $|\theta\rangle \rightarrow |\theta\rangle$ instead of Eq. (1).

- c) Express these results in the Dirac notation in terms of outer products of states $|H\rangle$ and $|V\rangle$;
- d) Find the matrices of $\hat{A}_{\lambda/2}$ and $\hat{A}_{\lambda/4}$ in basis $\{|\theta\rangle, |\frac{\pi}{2} + \theta\rangle\}$.
- e) Determine the matrices of $\hat{A}_{\lambda/2}$ and $\hat{A}_{\lambda/4}$ in the canonical basis from those in basis $\{|\theta\rangle, |\frac{\pi}{2} + \theta\rangle\}$ using the method of "inserting $\hat{\mathbf{1}}$ " [Eq. (A.27) in the lecture notes]. Is your result consistent with part (b)?
- f) Determine the matrices of $\hat{A}_{\lambda/2}^{-1}$ and $\hat{A}_{\lambda/4}^{-1}$ in the canonical basis. **Hint:** This part has a very simple solution.
- g) Suppose that the waveplate is placed in front of a polarizing beam splitter and used for measuring the polarization state of the photon. Find the measurement bases both for the halfand quarter-wave plate cases. Hint: What states will Â_{λ/2} and Â_{λ/4} convert into |H⟩ and |V⟩?
- h) In the above measurement, the event in which the photon is registered by the detector in the transmitted channel is assigned value +1, and in the reflected channel -1. Find the matrix of the corresponding observables in the canonical basis. Verify that this observable becomes $\hat{\sigma}_x$ for the half-wave plate and $\theta = 22\frac{1}{2}^{\circ}$, and $\hat{\sigma}_y$ for the quarter-wave plate and $\theta = 45^{\circ}$ (see
- i) Suppose operators $\hat{A}_{\lambda/2}$ and $\hat{A}_{\lambda/4}$ correspond to the evolution under some Hamiltonians $\hat{H}_{\lambda/2}$ and $\hat{H}_{\lambda/4}$ for time t_0 . Find the matrices of these Hamiltonians in the canonical basis.
- j) Using the above result, write the Schrödinger equation for the half-wave plate at $\theta = 30^{\circ}$. Solve that equation using the matrix method [Eq. (1.25) from the lecture notes] for the initial state \hat{H} . Is the result for $t = t_0$ consistent with what you would expect from the physics of polarization transformations?

Use notation $c = \cos \theta$, $s = \sin \theta$.

Ex. 1.25).