University of Calgary Winter semester 2015

PHYS 443: Quantum Mechanics I

Homework assignment 6

Due April 14, 2015 in SB 318

Problem 6.1. The single-photon added coherent states (SPACS) are obtained from coherent states by action of the creation operator: $|\alpha, 1\rangle = \mathcal{N}\hat{a}^{\dagger} |\alpha\rangle$.

- a) Find normalization factor \mathcal{N} .
- b) Find the decomposition of this state in the photon number basis (you are not required to simplify the result).
- c) Find the expectation value of the position observable.
- d) Find the wavefunction of the SPACS for a real α .
- e) Which quantum state does SPACS approach in the limit $\alpha = 0$? $\alpha \to \infty$?

Problem 6.2. End-of-chapter Problem 3.9 from the lecture notes.

Note a typo in Eqs. (3.87) in the lecture notes. The correct set of equations should read

Transmission:
$$\frac{j_E}{j_A} = \left|\frac{E}{A}\right|^2 = \frac{4k_0^2k_1^2}{4k_0^2k_1^2 + (k_1^2 + k_0^2)^2\sinh^2(k_1L)};$$
 (1)

Reflection:
$$\frac{j_B}{j_A} = \left|\frac{B}{A}\right|^2 = \frac{(k_1^2 + k_0^2)^2 \sinh^2(k_1 L)}{4k_0^2 k_1^2 + (k_1^2 + k_0^2)^2 \sinh^2(k_1 L)}.$$
 (2)

Problem 6.3. At time t = 0, state $|\psi\rangle$ of a harmonic oscillator has mean position $\langle X \rangle = X_0$, mean momentum $\langle P \rangle = P_0$. Calculate the mean values of the position and momentum observables of this state as a function of time.

Problem 6.4. From expressions (4.16) in the lecture notes for the angular momentum components in spherical coordinates, derive these components in Cartesian coordinates (4.11).

Problem 6.5.

- a) Find the matrices of \hat{L}_x , \hat{L}_u , \hat{L}_z , \hat{L}_{\pm} , and \hat{L}^2 explicitly for l = 3/2.
- b) Verify that these matrices obey $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$.
- c) For these matrices, determine the commutators $[\hat{L}_i, \hat{L}_j]$ and verify that they are consistent with the known commutation relations for the angular momentum components.

Problem 6.6. For state $|n, n-1, m\rangle$ the hydrogen atom,

- a) calculate the radial component $R_{n,n-1}(r)$;
- b) calculate $\langle r \rangle$.

Problem 6.7. Calculate $\langle 100 | \hat{x} | 211 \rangle$ for the hydrogen atom.