University of Calgary Winter semester 2015

PHYS 443: Quantum Mechanics I

Homework assignment 4

Due March 10, 2015 at 9:30am

Problem 4.1. A Bell inequality test, as described in the lecture notes, is performed with a defective entangled source which produces a statistical mixture of state $|\Psi^{-}\rangle$ with probability η and $|\Psi^{+}\rangle$ with probability $1 - \eta$. What is the range of η values for which the Bell inequality is violated?

Problem 4.2. The quantum teleportation protocol is implemented with state $|\Phi^+\rangle$ as the entangled resource, instead of $|\Psi^-\rangle$. Verify that the protocol will still work. Determine the local operations that Bob will need to perform in order to obtain a copy of Alice's state in the event of each outcome of Alice's Bell measurement.

Problem 4.3. For two functions f(x) and g(x), $\int_{-\infty}^{+\infty} f^*(x)g(x)dx = A$. Find $\int_{-\infty}^{+\infty} \tilde{f}^*(k)\tilde{g}(k)dk$, where $\tilde{f}(k) = k \tilde{f}(k)$.

 $\tilde{f}(k)$ and $\tilde{g}(k)$ are the Fourier transforms.

Problem 4.4. Find the Fourier transform of the following functions (with $\kappa, a > 0$).

- a) $f(x) = e^{-\kappa |x|}$.
- b) $f(x) = e^{-\kappa |x|} \cos x$.
- c) $f(x) = e^{ik_0x (x-a)^2/2b^2}$
- d) $f(x) = x \cos x$. (Hint: use the same trick as when calculating the Fourier transform of a derivative).

Problem 4.5. A state has wavefunction

$$\psi(x) = Axe^{-\kappa^2 x^2/2}.$$

- a) Find the normalization factor A.
- b) Find the wavefunction $\tilde{\psi}(p)$ in the momentum basis.
- c) Verify the uncertainty principle: $\left< \Delta p^2 \right> \left< \Delta x^2 \right> \ge \hbar^2/4$.

Hint:

$$\int_{-\infty}^{+\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}; \quad \int_{-\infty}^{+\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{4}.$$

Problem 4.6. Find the matrix element $\langle p | \hat{A} | p' \rangle$ if operator \hat{A} is a function of position: $\hat{A} = e^{-\hat{x}^2/b^2}$.