University of Calgary Winter semester 2007

PHYS 443: Quantum Mechanics I

Homework assignment 3

Due February 13, 2007

<u>Problem 3.1.</u> In a three-dimensional Hilbert space, three operators, in an orthonormal basis $\{|v_1\rangle, |v_2\rangle, |v_3\rangle$ have the following matrices:

$$\hat{L}_x \leftrightarrow \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right), \quad \hat{L}_y \leftrightarrow \left(\begin{array}{ccc} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{array}\right), \quad \hat{L}_z \leftrightarrow \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

- a) Show that these operators are Hermitian (i.e. they can be interpreted as physical observables).
- b) Are these operators unitary?
- c) Find the eigenvalues and eigenstates of \hat{L}_x , \hat{L}_y , and \hat{L}_z .
- d) Find the commutation relations of these observables.
- e) The observable L_y is measured in the state $|\psi\rangle = (3 |v_1\rangle + 4i |v_2\rangle)/5$. What results can be obtained and with which probabilities?
- f) Find the expectation values and uncertainties of the measurements of \hat{L}_x and \hat{L}_y in the state $|\psi\rangle$.
- g) Verify that the uncertainty principle holds for the measurements in part (f).
- h) The system initially (t = 0) in state $|v_1\rangle$ experiences quantum evolution with the Hamiltonian $\hat{H} = \hbar \omega \hat{L}_x$. Find the state of the system at an arbitrary time t. What is the probability that the system will remain in its initial state at the moment $\omega t = \pi/2$? $\omega t = \pi$? $\omega t = 2\pi$?