University of Calgary Winter semester 2007

PHYS 443: Quantum Mechanics I

Homework assignment 7

Due April 12, 2007

<u>Problem 7.1.</u> For an arbitrary $|n\rangle$, calculate $\langle X \rangle$, $\langle \Delta X^2 \rangle$, $\langle P \rangle$, $\langle \Delta P^2 \rangle$ and verify the uncertainty principle. **Hint:** do *not* use wavefunctions.

<u>Problem 7.2.</u> A finite potential barrier of very large height V_0 and very short length L can be approximated as a delta-function potential $V(x) = W\delta(x)$, where $W = V_0 L$. Find the reflection and transmission coefficients of a de Broglie wave with wavevector k on such a barrier.

Problem 7.3.

- a) Find the matrices of \hat{L}_x , \hat{L}_y , \hat{L}_z , \hat{L}_{\pm} , and \hat{L}^2 explicitly for l = 1.
- b) Verify that these matrices obey $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$.
- c) For these matrices, determine the commutators $[\hat{L}_i, \hat{L}_j]$, $[\hat{L}_z, \hat{L}_{\pm}]$ and $[\hat{L}_+, \hat{L}_-]$ and verify that they are consistent with the general commutation relations for the angular momentum derived in class.

<u>Problem 7.4.</u> Spin-1 particles of mass m, charge e and Landé factor g are prepared with the spin projection onto the x-axis m = -1. At t = 0, a magnetic field B in the z-direction is turned on. After time t_0 has elapsed, the field is turned off and the electrons are subjected to the Stern-Gerlach measurement with the magnetic field oriented along the x axis. What are the probabilities of all possible measurement outcomes? **Hint:** use the result of homework problem 3.1.