University of Calgary Winter semester 2006

PHYS 443: Quantum Mechanics I

Second midterm examination

March 30, 2006

Open books. Answer both questions.

<u>Problem 1.</u> Alice and Bob each have a photon whose polarization is initially horizontal. In order to entangle their photons, they subject them to the following sequence of operations:

- a) (15 pts) Both Alice and Bob act on their photon with the unitary operator \hat{A} whose matrix in the (H, V) basis is $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
- b) (20 pts) The resulting state is subjected to the action of the Hamiltonian $\hat{H} = \hbar \omega |VV\rangle \langle VV|$ for a time duration of π/ω . [Hint: other Hamiltonian eigenstates ($|HH\rangle$, $|HV\rangle$, and $|VH\rangle$) correspond to zero energy values.]
- c) (15 pts) Bob again applies operator \hat{A} to his photon.

Find the state of the photon pair after each operation.

<u>Problem 2.</u> Sketch qualitative plots of the stationary wavefunctions of the potentials shown in the figure below with energy levels as shown. **Note:** full credit will be given to solutions with proper attention to details, such as: relations between de Broglie wavelengths in different areas of the plot, continuity conditions, sign of the derivative discontinuity at the delta function potential, etc.

