University of Calgary
 Winter semester 2006

 PHYS 443: Quantum Mechanics I

 PHYS 443: Quantum Mechanics I

 First midterm examination

 First midterm examination}

February 16, 2006
Open books. Answer any two of these questions.
Problem 1. Consider an operator \hat{A} whose action corresponds to that of a halfwave plate with optical axis oriented 30° degrees to horizontal.
a) (10 pts) Onto which states does \hat{A} map $|H\rangle$ and $|V\rangle$?
b) (10 pts) Find the matrix of \hat{A} in the canonical basis
c) (10 pts) Is \hat{A} unitary?
d) (20 pts) Find the eigenvalues and eigenvectors of \hat{A}.
e) (extra credit: 20 pts) Verify that the physical states corresponding to these eigenvectors remain unchanged when transmitted through the wave plate.

Problem 2. Consider an operator described in the canonical basis by the following matrix:

$$
\hat{A} \leftrightarrow \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \tag{1}\\
1 & 1
\end{array}\right) .
$$

a) (10 pts) Is \hat{A} unitary? Hermitian?
b) (20 pts) Observable \hat{A} is measured in the quantum state $|\psi\rangle=(|H\rangle+2|V\rangle) / \sqrt{5}$. What are the possible measurement outcomes A_{1}, A_{2} ? What is the probability $\mathrm{pr}_{1}, \mathrm{pr}_{2}$ of each outcome?
c) (20 pts) Find the expectation value $\langle\psi| \hat{A}|\psi\rangle$. Verify that this expectation value equals $\mathrm{pr}_{1} A_{1}+\mathrm{pr}_{2} A_{2}$.

Problem 3. Consider a birefringent medium with the following properties:

- linear 30° polarized photon has a certain energy value 0 ;
- linear 120° polarized photon has a certain energy value $\hbar \omega$.
a) (20 pts) Find the Hamiltonian.
b) (30 pts) Find the polarization state $|\psi(t)\rangle$ of the photon at time t if its initial state is $|\psi(0)\rangle=|V\rangle$.
Note: $\sin 30^{\circ}=\frac{1}{2} ; \cos 30^{\circ}=\frac{\sqrt{3}}{2}$

