University of Calgary Winter semester 2006

PHYS 443: Quantum Mechanics I

First midterm examination

February 16, 2006

Open books. Answer any two of these questions.

<u>Problem 1.</u> Consider an operator \hat{A} whose action corresponds to that of a halfwave plate with optical axis oriented 30° degrees to horizontal.

- a) (10 pts) Onto which states does \hat{A} map $|H\rangle$ and $|V\rangle$?
- b) (10 pts) Find the matrix of \hat{A} in the canonical basis
- c) (10 pts) Is \hat{A} unitary?
- d) (20 pts) Find the eigenvalues and eigenvectors of \hat{A} .
- e) (extra credit: 20 pts) Verify that the physical states corresponding to these eigenvectors remain unchanged when transmitted through the wave plate.

<u>Problem 2.</u> Consider an operator described in the canonical basis by the following matrix:

$$\hat{A} \leftrightarrow \frac{1}{2} \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix}. \tag{1}$$

- a) (10 pts) Is \hat{A} unitary? Hermitian?
- b) (20 pts) Observable \hat{A} is measured in the quantum state $|\psi\rangle = (|H\rangle + 2 |V\rangle)/\sqrt{5}$. What are the possible measurement outcomes A_1, A_2 ? What is the probability pr₁, pr₂ of each outcome?
- c) (20 pts) Find the expectation value $\langle \psi | \hat{A} | \psi \rangle$. Verify that this expectation value equals $\operatorname{pr}_1 A_1 + \operatorname{pr}_2 A_2$.

<u>Problem 3.</u> Consider a birefringent medium with the following properties:

- linear 30° polarized photon has a certain energy value 0;
- linear 120° polarized photon has a certain energy value $\hbar\omega$.
- a) (20 pts) Find the Hamiltonian.
- b) (30 pts) Find the polarization state $|\psi(t)\rangle$ of the photon at time t if its initial state is $|\psi(0)\rangle = |V\rangle$.

Note: $\sin 30^\circ = \frac{1}{2}; \ \cos 30^\circ = \frac{\sqrt{3}}{2}$