University of Calgary Winter semester 2006

PHYS 443: Quantum Mechanics I

Home assignment 2

Due January 31, 2006

<u>Problem 2.1.</u> Decompose $|H\rangle$ and $|V\rangle$ in the $(|R\rangle, |L\rangle)$ basis

- a) by solving Eqs. (1.4) and (1.5);
- b) by using Eq. (1.9).

Verify that the results are identical.

Problem 2.2.

- a) Decompose polarization states $|a\rangle = |+30^{\circ}$ to horizontal and $|b\rangle = |-30^{\circ}$ to horizontal in the $(|H\rangle, |V\rangle)$, $(|+\rangle, |-\rangle)$, and $(|R\rangle, |L\rangle)$ bases. **Hint:** First use the analogy between classical and quantum fields to express $|a\rangle$ and $|b\rangle$ in the canonical basis. Then convert to other bases using one of the methods from the previous problem.
- b) Find the probabilities associated with quantum measurements in each of the three bases.
- c) Find the inner product $\langle a|b\rangle$ using the result of Ex. 1.15 in all three bases. Does it come out the same?

<u>Problem 2.3.</u> Perform the Gram-Schmidt procedure for three 3D vectors: $\vec{w_1} = (4,3,0), \ \vec{w_2} = (-4,-3,1), \ \vec{w_3} = (1,1,1)$. Verify that the basis obtained is indeed orthonormal¹.

<u>Problem 2.4.</u> Prove the Cauchy-Schwartz inequality for a two-dimensional Hilbert space. Show that equality is achieved if and only if $|a\rangle$ and $|b\rangle$ differ only by a scalar factor.

Problem 2.5. Ex. 1.34 from the lecture notes.

<u>Problem 2.6.</u> Linear operator \hat{A} transforms $|R\rangle$ into $|+30^{\circ}$ to horizontal \rangle , and $|L\rangle$ into $|+120^{\circ}$ to horizontal \rangle .

a) Find the matrix of \hat{A} in the canonical basis.

¹Note a typo in Eq. (1.11) in the lecture notes. It should read $|v_{k+1}\rangle = \mathcal{N} \left[|w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle |v_i \rangle \right].$

b) Propose an arrangement of waveplates that would implement this operator physically.

<u>Problem 2.7.</u> Ex. 1.44 from the lecture notes. Verify that the matrix of \hat{A} has the same trace in the canonical and circularly polarized bases.

 $\underline{\text{Problem 2.8.}}$ Ex. B.28 from the lecture notes (Appendix B).