
Kinetic Theory and Thermodynamics

Handout 3:

Pressure and effusion

In Lecture 3 we consider dilute gases in equilibrium. We will make a couple of assumptions:
first, that the molecular size is much less than the intermolecular separation, so that we
assume that molecules spend most of their time whizzing around and only rarely bumping
into each other; second, we will ignore any intermolecular forces. Molecules can exchange
energy with each other due to collisions, but everything is in equilibrium and the gas will have
a Maxwell-Boltzmann distribution. Each molecule behaves like a small system connected to
a heat reservoir at temperature T , where the heat reservoir is ‘all the other molecules in the
gas’.

In the lecture we derive an expression for the pressure, p, which is

p =
1

3
nm〈v2〉,

where n is the number of molecules per unit volume and m is the molecular mass. This
expression agrees with the ideal gas equation,

p = nkBT ,

where V is the volume, T is the temperature and kB is Boltzmann’s factor.

The particle flux, Φ, is the number of molecules which strikes unit area per second and is given
by

Φ =
1

4
n〈v〉.

This expression, together with the ideal gas equation, can be used to derive an alternative
expression for the particle flux:

Φ =
p√

2πmkBT
.

These expressions also govern molecular effusion through a small hole.



Transport properties

In Lectures 4 and 5 we use the ideas which we have described in the previous lectures to
establish some results concerning transport properties. We thus consider

1. viscosity (transport of momentum),

2. thermal conductivity (transport of heat) and

3. diffusion (transport of particles).

We are therefore no longer considering equilibrium situations, though everything is still in the
steady-state. The lectures will show how one can derive some simple expressions for each of
the three transport properties described above. This handout can be used to illustrate how
well these predictions work in practice.

Viscosity

The figure on the left shows the apparent viscosity of air as a function of pressure. It
is found to be constant over a wide range of pressure. The temperature dependence
of the viscosity of various gases is shown on the right, plotted from the data below.

Gas 0◦C 20◦C 50◦C 100◦C 200◦C 300◦C 400◦C 500◦C 600◦C

Air 17.3 18.2 19.6 22.0 26.1 29.8 33.2 36.4 39.4
Argon 21.0 22.3 24.2 27.3 32.8 37.7 42.2 46.4 50.4
Helium 18.7 19.6 21.0 23.2 27.3 31.2 34.8 38.4 41.8
Hydrogen 8.4 8.8 9.4 10.4 12.1 13.7 15.3 16.9 18.4
Krypton 23.4 25.0 27.4 31.2 38.0 44.2 49.9 55.2 60.2
Nitrogen 16.6 17.6 18.9 21.2 25.1 28.6 31.9 34.9 37.8
Steam 9.2 9.7 10.6 12.4 16.2 20.3 24.5 28.6 32.6
Xenon 21.2 22.8 25.1 28.8 35.7 42.0 47.9 53.4 58.6

Gas (at 300 K) 2 MPa 5 MPa 10 MPa 20 MPa 30 MPa

Air 18.7 19.3 20.5 23.7 27.5
Argon 23.3 24.0 25.7 30.5 36.4
Helium 19.9 19.9 20.0 20.1 20.3
Hydrogen 8.98 9.01 9.09 9.31 9.59
Nitrogen 18.3 18.9 20.1 23.2 26.8

Viscosities in µPa s



Thermal conductivity

The figure on the right shows
the thermal conductivity
(in W m−1 K−1) of four gases
as a function of temperature (in K)
plotted on a log-log scale.

Gas 173.2 K 273.2 K 373.2 K
Argon 1.09 1.63 2.12
Air 1.58 2.41 3.17
Hydrogen 11.24 16.82 21.18
Nitrogen 1.59 2.45 3.23
Xenon 0.34 0.52 0.70

Thermal conductivities in the table above are in 10−2 W m−1 K−1

Heat capacities:
The heat capacity C relates the amount of heat something can absorb to the temperature rise
that produces. A rabbit has a heat capacity, so does 3 kg of iron. But two rabbits have
(approximately) double the heat capacity of one. The specific heat capacity c of something is
the heat capacity per unit mass. Sometimes one can also measure the heat capacity per unit

volume of a substance (which equals cρ where ρ is the density) or the heat capacity per molecule

(which equals cm where m is the mass of the molecule).

Later we will write things like CV which is the heat capacity of something at constant volume
(NOT per unit volume).

Diffusion

D against p and 1/p for argon. (Data from T. R. Mifflin and C. O. Bennett,
J. Chem. Phys. 29, 975 (1959).)



The key results are:

(1) Viscosity, η η =
1

3
nmλ〈v〉

(2) Thermal conductivity, κ κ =
1

3
nCλ〈v〉 (where C is the heat capacity per molecule)

(3) Self-diffusion, D D =
1

3
λ〈v〉

The derivations for each one of these are fairly similar and will be covered in the lectures.

It is important to know how to use these results to predict the temperature and pressure
dependences of these three quantities and under what conditions those predictions will hold.
This will be discussed in the lectures.

The thermal diffusion equation

Heat flux J is defined as the amount of heat passing across unit area per second. It is
proportional to the gradient in the temperature, with the constant of proportionality being
the thermal conductivity. Thus:

J = −κ∇T

The total rate of heat flow out of a volume V , with surface S, is given by∫
S

J · dS =

∫
V

∇ · J dV

where the second equality follows from the divergence theorem. If heat is flowing out of the
volume, then whatever is in the volume must be cooling down. If we use C as the heat capacity
per unit volume (remember C = cρ where c is the specific heat capacity, defined per unit mass,
and the ρ is the density), one can immediately state that the energy stored in V is

∫
V

CT dV
(plus a constant). Thus ∫

S

J · dS = − ∂

∂t

∫
V

CT dV.

Putting all this together yields the thermal diffusion equation:

∇2T =
C

κ

∂T

∂t
.

The one-dimensional thermal diffusion equation is then

∂2T

∂x2
=

C

κ

∂T

∂t
.

This can also be written as
∂2T

∂x2
=

cρ

κ

∂T

∂t
.
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