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Aim of today'’s talk:

*Explanation of the very (very) basics of how a light
microscope works

elllustration of the most important modifications that
make the microscope more useful--phase contrast,
DIC, fluorescence

*Qutline the bacterial chemotaxis practical session



What can we do with a light
microscope?

In a nutshell:

« Magnify things, resolve details not possible with the
naked eye.

More specifically:

e ODbtain information about the distribution of specific
molecules inside cells, including sub-cellular structures

* Follow changes in cells or molecules over time.



Light has both particle and wave properties

*Quantum mechanics -- too complicated for today!

sLight travels in a straight line (rays)--like a bullet

S

»

Light also has "wave" properties, such as wavelength, and
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Lenses utilize “refraction” of light

Interaction of light with matter can alter speed, and path, of light.

How? The electrons in the material interact with the vibrations of the
electromagnetic field.

A prism: different A lens: refraction at curved
wavelengths are refracted surfaces can cause the light rays
(bent) to different degrees to converge (or diverge)
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How do lenses magnify?

f = "focal length", or "focal distance", of lens.
Magpnification depends on position of object relative to the lens.
This can be seen by "ray tracing” (black lines and arrows).

Object at distance greater
than 2 x f from the lens

Object exactly at distance
2 x f from the lens

Object at distance between
2 x fand f from the lens

Miniature image formed, at
distance between fand 2 x f

Same-size image formed,
at distance 2 x f from the
lens

Magnified object formed, at
distance than distance "f"
the lens



The compound microscope

Conceptually, the compound microscope is not much different from a magnifying glass, but it has two different stages
of magnification (hence "compound")--the objective and the eyepieces.

The objective creates an image inside the microscope, and this is further magnified by the ocular (eyepiece).

The eye is part of the "imaging system™!

In addition, everything is mounted on a stand, which makes it easy to focus, and there is a built-in illumination source.
The condenser lens (under the stage) directs the light correctly onto the sample.
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Magnification alone isn’t sufficient

Resolution:

The abillity to distinguish two points very close together

"Airy rings*
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What determines the resolution limit?

A A

*No lens has perfect resolution, even
in theory

*Resolution depends on the angle (6)
of the cone of light that the objective
can collect from the specimen.

Objective lens

*This angle, called Numerical
Aperture, in turn depends on the lens
diameter and on the distance from
the specimen to the lens.

Specimen

For all practical purposes,

improvements of Numerical Aperture
in microscope design have reached wavelength
their limits. ‘

*The other factor affecting resolution
is the wavelength of light itself.




Useful size range for light microscopy

research
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Using standard light microscopy
most structures and substructures
we observe are within a typical
range from about 300 um down to
about 0.3 um (300 nm), though
we can detect single molecules
under certain circumstances



By 1900 generic microscope designs
were very similar to those of today, but...

....cells are mostly water, and therefore mostly transparent!

How can you generate contrast to "see" a transparent object?




Using chemical stains for cells and tissues

Mitosis in white blood cells--

Giemsa stain S _ _
Epithelial tissue--Haemotoxylin (basic

- 4
W 1 dye) & Eosin (acidic dye) stain
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Discoveries in biology emerged from
cytochemistry:

Different types of granulocytes (white-blood cells) include :
Basophils: granules bound basic dyes (e.g. haemotoxylin)
Eosinophils: granules bound acid dyes (e.g. eosin)

Neutrophils: not stained with either acid- or basic-dyes

But these cells are FIXED




The big advances over previous 100 years:

e Imaging live cells (Phase contrast microscopy:
1930s, Differential contrast microscopy:
1950s)

* Imaging specific molecules inside cells
(Immunofluorescence microscopy: 1960s and
onwards)

* Imaging specific molecules inside live cells
(Fluorescent labelled proteins:1980s, Green
Fluorescent Protein: 1990s)



How to see non-fixed living cells?

 How do stained samples generate contrast?

 Now need to think about light as electromagnetic
radiation, i.e., waves.

 When stained samples absorb light, they reduce
the amplitude of specific wavelengths
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Transparent object do interact with light!

Light passing through any dense sample is slowed down (this is
one aspect of refraction), which changes its phase relative to light
not passing through the sample
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Phase-contrast microscopy:

sInvented by Zernike, a physicist, in the 1930s (Nobel
Prize, 1953)

*Uses interference of light waves turn "invisible" phase
differences into contrast. In essence Is sensitive to

spatial differences in refractive index
Normal contrast
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Differential interference contrast (DIC)

* Another phase-dependent method, more recent than phase
contrast, and much more complicated technically.

» Also takes advantage of differences in phase, but measures
relative phase difference (i.e. is sensitive to the spatial gradient
of refractive index), not absolute phase difference.

» Differences are greatest at edges, giving 3-D contour effect

Normal contrast
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More specific stains:

« Beginnings in late 1960s/early 1970s.
« Starts with chemically-fixed cells.
« Use antibodies to visualize specific components of cells

* Incubate with“primary"” antibody that binds uniquely to a specific
protein (e.g. "rabbit anti-actin")

 Then incubate with labeled “secondary" antibody that binds to the
primary antibody (e.g. fluorescein-labelled "sheep anti-rabbit")

Seeing this easily

Pri Labeled required a new type
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Fluorescence

* Fluorophore absorbs light of a specific wavelength
 Rapidly emits light of longer wavelength (within

nanoseconds)
e Can have multiple distinct fluorophore in the same

experiment.
« Best results require modifications to the microscope

design.

Fluorescein Ho Rhodamine
HO. ' i0 I OH HSC‘\/N\‘ ;0; /‘ /NL/ BCHs
Absorb: 490 nm (blue) Absorb: 550 nm (green-yellow)

Emit: 520 nm (green) Emit: 580 nm (orange-red)



“Epifluorescence” microscopes

Epifluorescence microscopy uses

illumination from above ("epi-") and a special

cube containing usually two colored filters
plus a special beam-splitting ("dichroic")

mirror
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eyepiece
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3 second barrier filter: cuts out
unwanted fluorescent signals,
passing the specific green
fluorescein emission between
520 and 560 nm

2 beam-splitting mirror; reflects
light below 510 nm but
transmits light above 510 nm

1 first barrier filter: lets through
only blue light with a wavelength
between 450 and 490 nm
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Ohanpus IX70 Inverted Microscope Light Pathways
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Seeing different molecules types in living cells?

» Some fluorescent dyes bind to specific compartments or
organelles

« Can also "microinject” labelled protein, or labelled antibody,
directly into cells.

Difficulties:
« Requires purified proteins or antibodies.
 These may perturb protein function.

 Many types of cells (cells in tissues, microorganisms, many
plant cells) cannot be injected.



An answer: GFP

 Green Fluorescent Protein, a naturally fluorescent
protein identified in the jellyfish Aequorea victoria.




Antibody-tethered cell-rotation assay:.
)  evanescent — >

field l Q

b)
GFP . MotA
1 +— MotB
AFAFATFAFATFATLY VAN AT PR AP Fy

50 nm

(d) Brightfield and (e) TIRF images of GFP-MotB E. coli mutant. Black bar=1um



Extending the palette:

EYFP = enhanced Yellow Fluorescent Protein
(GFP derivative)

ECFP = enhanced Cyan Fluorescent Protein
(GFP derivative)

DsRed2FP = Red Fluorescent Protein
(coral protein, unrelated to GFP, and not
EYFP - Nucleus monomeric)

ECFP - Golgl Complex
DsRed2FP - Mitochondria

Changing the
properties of GFP
and RFP by genetic
engineering
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Advanced methods for fluorescence microscopy:

How to improve the quality of fluorescent imaging?

*Deconvolution microscopy: using computation to put "out-of-focus" light back where
it belongs

sConfocal microscopy: using tricks of geometric optics to remove "out-of-focus" light
before it hits the detector

*TIRF: delimiting the excitation volume to improve image contrast

How to measure protein interactions and dynamics?

*FRET (Foerster Resonance Energy Transfer)

*FLIM (Fluorescence Lifetime Imaging)

*FRAP/FLP (Fluorescence Recovery After/Loss In Photobleaching)

*FCS (Fluorescence Correlation Spectroscopy)



“off-focus” problems

Towards the lens

Sample object: a "sub-
resolution” fluorescent

bead

Paraxial focus




Deconvolution of off-focus light

Objective lens / \
[

X-Z view of
sample object
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X-Z view of
deconvolved
image stack

X-Z view of raw
image stack

Planes of focus
(z stack)



Before deconvolution After deconvolution

GFP tag in Drosophila embryo



Confocal microscope (laser scanning)
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At the pinhole aperture, in-focus light from the specimen is again "in focus”, and all of it goes through the pinhole, but out-of-focus

light from the specimen is now "out-of-focus” and spread out, contributing little to the total signal received by the photomultiplier



Total-internal-reflection-fluorescence
(TIRF):
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Measuring molecular interactions and dynamics

* Fluorescence correlation spectroscopy (FCS)

* Fluorescence recovery after/loss in photobleaching
(FRAP/FLIP)

« Foerster resonance energy transfer (FRET) and
multi-colour imaging

* Fluorescence lifetime imaging (FLIM)



Fluorescence correlation spectroscopy (FCS)

Good for measuring concentrations,
diffusion coefficients and turnover Different diffusion coefficients

give rise to different fluctuations
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Fluorescence recovery after photobleaching
(F RA P) Fission yeast mitotic spindles

Pre-anaphase Anaphase

Start with structure of interest
uniformly labeled with fluorophore
(fluorescent dye or GFP-fusion
protein).

Then, photobleach a region, and
follow recovery in space and time




Focused Laser FRAP/FLIP (...Loss In Photobleaching):

Either track individual particles
directly, or apply Monte-Carlo
2D simulations to estimate
diffusion coefficient:
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Foerster resonance energy transfer (FRET)

* Uses a pair of distinct but compatible

fluorophores (e.g. fluorescein and \

rhodamine, or CFP and YFP), each Fluor Rhod

attached to a different protein Cj ¢’ No FRET
» If proteins are close together (6-8 nm), the O

energy emitted by the shorter-wavelength
fluorophores can be "immediately”
absorbed by the longer-wavelength
fluorophore

 To be "compatible", the emission spectrum
of the shorter-wavelength fluorophore must
overlap considerably with the excitation

spectrum of the longer-wavelength
fluorophore > -
. . Fluor FRET
* Since FRET occurs only when two proteins Rhod
are very close together, it can be used to <

judge whether two proteins are present in
the same complex in vivo (far superior to
"co-localization at the light level")




Fluorescence lifetime imaging (FLIM)

Example: the merging of two flowing

*Changes in the molecular environment .
microchannels of fluorescent dye

of a fluorochrome (including interactions
with FRET partners) can alter the
fluorescence lifetime

Conventional fluorescence image

Rhodamine in KCI

*This can be used to assay protein-

protein interactions, among other things
Sl Rhodamine in K

Decay of fluorescence after excitation:

I ta=4ns

intensity

Fluorescence lifetime image

v

time

http://www.cheng.cam.ac.uk/news/2004/flim.html



The bacterial chemotaxis
practical...
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