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CONSTRAINTS IMPOSED ON BIOLOGICAL SYSTEMS BY THEIR 
ENVIRONMENT 

 
Macroscopic level – Biological systems are living things that can move, grow and replicate. They can 
only do this by making use of the resources in their immediate vicinity. They also have to be able to 
survive the effects of the immediate vicinity as well. 

• Abundance of the chemical elements 
• External physical conditions - prevailing gravity, pressure, temperature, radiation 

levels 
• External chemical environment - (either water or mixture of N2 and O2) 
• Available energy sources - heat, light, unstable chemicals from the surroundings 

(usually other biological systems and thus indirectly from light). 
 
 

CONSTRAINTS IMPOSED ON BIOLOGICAL SYSTEMS BY PHYSICS AND 
CHEMISTRY 

 
Molecular level - Biological systems are just a large collection of spatially and temporally localised 
chemical reactions. These reactions follow the same rules whether they happen in a test tube or a cell. 

• Chemical properties of the elements and their compounds - determined entirely by 
the covalent and non-covalent interactions between atoms. 

quantum mechanics 
macromolecular structure 

• Energetic requirements of chemical reactions - the energy requirement must be met 
by the available energy sources, otherwise reactions cannot occur. 

thermodynamics 
• Rates of chemical reactions - the rate of a reaction is determined by the nature of the 

process and its energy requirements. 
reaction kinetics 
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FUNDAMENTAL PARTICLES - A PHYSICISTS VIEW 
 
Everything in the entire universe is made up of fundamental particles (defined as particles with no 
internal structure). There are three types of fundamental particles; 

1. Leptons – e.g. electrons, neutrinos 
2. Quarks – e.g. up, down, charm 
3. Force carriers – e.g. photon 

There are 6 leptons, 6 quarks and 4 force carriers.  
 
Leptons can be directly detected. Quarks cannot be directly detected, we can only see particles made up 
of several quarks (the proton and neutron are both made of three quarks). We only know that quarks 
exist because the best theory available requires that they do. Force carriers mediate all the interactions 
between the other particles. 
 
 

FUNDAMENTAL PARTICLES - A CHEMISTS VIEW 
 
The only particles that are of interest to chemists (and thus biochemists) are; 
  proton   mass = 1  charge = +1 
  neutron   mass = 1  charge = 0 
  electron  mass = 0.0005 charge = -1 
  photon   mass = 0  charge = 0 
Each of these particles can have two types of energy; 

1. Kinetic energy associated with their velocity (½mv2) 
2. Potential energy associated with the interactions (forces) between the particles 

 
 

TYPES OF FORCES - A PHYSICISTS VIEW 
 
There are four (and only four) fundamental forces; 

1. Strong force – holds nuclei together (only of interest to physicists) 
2. Electromagnetic force – interactions between charges and between electromagnetic radiation 

and matter 
3. Weak force – involved in radioactive decay (also only of interest to physicists) 
4. Gravity - interaction between masses over very long range (only of interest on a macroscopic 

scale, e.g. astronomy). 
 
The electromagnetic force determines ALL chemistry and hence all biochemistry. 
 
 

ELECTROMAGNETIC FORCE 
 
The electromagnetic force is responsible for; 

• Holding electrons around nuclei in atoms (i.e. atomic structure) 
• Covalent bonding between atoms (holding nuclei together, mediated by the electrons) 
• Ionic bonding between ions (as in crystals) 
• Non-covalent interactions between molecules (charged regions of the molecules interacting) 
• Being able to write (electrons in your finger repel electrons in the pen, allowing you to push 

the pen) 
The electromagnetic force has two parts; 

• an electric interaction due to the presence of any charges (electrostatic interaction) 
• a magnetic interaction as a result of moving charges. 

We will only worry about the electric interaction because that it what is needed to understand atoms, 
molecules and intermolecular forces. 
 
The magnetic interaction is only relevant in biochemistry in; 

• Techniques such as Nuclear Magnetic Resonance spectroscopy 
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• Magnetoreceptors in some organisms (such as magnetite particles) 
 
 

ELECTROSTATIC INTERACTION - COULOMB’S LAW 
 
The force (F) of the interaction between two charges is;  

1 2
2

o

q q1
F

4 r
=

πε
 

where  q1, q2 – charges (C) 
 r – distance between charges (m) 
 εo  – permittivity of free space (8.85×10-12 C2 m-2 N-1) 
 
In order to calculate the potential energy (E) of two charged species, we have to calculate the force 
required to push them together from infinity (where by definition E=0). This is equivalent to integrating 
Coulomb’s Law between infinity and r. 
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The charge on an electron is -1.6×10-19 C. The attraction between two species with opposite unit 
charges (e.g. Na+ and Cl-, or a glutamic acid residue and a lysine residue) at a separation of 10 Å 
(1×10-9 m) is 

19 19
19

12 9

1 (1.6 10 ) ( 1.6 10 )
E 2.3 10 J

4 3.14 8.85 10 1 10

− −
−

− −

× × − ×
= = − ×

× × × ×
 

Thermal energy at 300 K is 4×10-21 J. 
 
For multiple charges, the potential energy is just the sum of all the pairwise interactions. 
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ELECTROSTATIC INTERACTION - DIPOLES 
 
A dipole consists of two opposite charges separated by a fixed 
distance. 
 
Dipole moment (µ) = δq × r 
 
 

 
 
The interaction between a charge and a dipole can be calculated in the 
usual way 
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or this can be rewritten as; 
µ ×

= ×
πε
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o 12

q t
E

4 r
 

where t is a triganometric term depending on the position of the charge relative to the dipole. 
 
The interaction between two dipoles can be calculated in the same basic way, or can be written as 
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where t is a triganometric term depending on relative orientations of the dipoles. 
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Summary so far … 
 

• All matter is made of charged particles (nuclei and electrons). 
• These particles interact via the electromagnetic force. 
• The potential energy of the electrostatic interaction between two charged particles is  

1 2

o

q q1
E

4 r
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πε
 

 
 

THE CLASSICAL WORLD 
 
Matter consists of particles (e.g. atoms). Energy is either associated with particles (e.g. kinetic energy) 
or consists of waves (e.g. light). One form of matter can be converted into another form of matter. 
Similarly, one form of energy can be converted into another form of energy, but matter and energy are 
fundamentally different and cannot interconvert.  
 
Waves; 

• have no mass, and thus no momentum 
• have no single position 
• spread out from a point 
• are characterised by a wavelength and an intensity 
• energy is related to the intensity 

The interaction between two waves is called interference. The two interacting waves add (constructive 
interference) and/or subtract (destructive interference) to give a resultant wave. 
 
Particles; 

• have mass (m) and thus momentum (mv) 
• have a single position (x,y,z coordinates) 
• have a well defined velocity (v) 
• travel in straight lines 
• energy = kinetic energy + potential energy 

Kinetic energy is due to the velocity of the particle – ½mv2. Potential energy is due to the position of 
the particle – there are many forms of potential energy, e.g. due to the position of the particle in a 
gravitational field, an electric field, a chemical bond, etc. 
 
 

CHEMICAL BOND - CLASSICAL APPROACH 
 
Consider a molecule which consists of two atoms joined by a bond. The equilibrium bond length is be. 
This is just like two weights on a spring. When the actual bond length is be the potential energy of the 
bond is at a minimum. If the actual bond length is shorter or longer than this, the potential energy will 
be higher, i.e. there will be a force trying to return the atoms to their equilibrium positions. 

 
Epotential = Kb(b – be)2 

 
where Kb is the bond force constant, which can be measured by vibrational 
spectroscopy.  
 
For a vibrating bond: 

• when the bond length is either at its maximum or minimum value, the 
potential energy is a maximum and the atoms are stationary so the 
kinetic energy is zero. 

• when the bond length is the equilibrium value, the potential energy is 
a minimum and the atoms are moving quickly so the kinetic energy is 
a maximum. 

Etotal = Kb(b – be)2 + ½mv2 

 Epot 

b 
be 

Etot

b
be

Epot

bmaxbmin

v=0

v=vmax
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ELECTROSTATIC INTERACTION - ROLE OF THE MEDIUM 
 
We can deal with solvent by explicitly calculating the electrostatic interactions between all the particles 
present. However, this is very complex so it is easier to make an approximation and treat the medium 
as a continuum (ignore the fact that it is made of molecules).  

1 2 1 2
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q q q q1 1
F     :    E

4 4 rr
= =

πε ε πε ε
 

where ε is the dielectric constant of the medium. It is a measure of how much the surroundings shield 
one charge from the other. The larger the value of ε, the weaker is the interaction. This is equivalent to 
saying that the interaction is shorter range. 
 
 Medium  ε rmax 
  
 Vacuum 1 540 Å 
 Middle of a lipid bilayer ~2 260 Å 
 Middle of a protein ~4 130 Å 
 Water 80 6 Å 
 
rmax – longest distance over which the interaction of two ions of unit charge is significant at 300 K. 
 
 

THE ENERGY OF A MOLECULE 
 
We can obtain a simple classical relationship for all the forms of potential energy that a molecule 
possesses. This is called a molecular force field and allows us to calculate the energy of a whole 
molecule (or assembly of molecules). 
 

( ) ( ) ( )2 2 ij ij i jn
potential b eq eq 12 6

bonds angles dihedrals i<j o ijij ij

A B q qV 1
E K b-b K - 1 cos n - +

2 4  rr rθ

 
 = + θ θ + + φ − γ +    πε ε  

∑ ∑ ∑ ∑
 
Energy minimisation - We can calculate the potential energy for lots of different arrangements of atoms 
for the molecule (different bond lengths, bond angles, conformations) and choose the one(s) with the 
lowest energy. This will give us the most stable arrangement(s) of atoms, i.e. the most probable 
structure(s) for the molecule. 
 
 

NEWTON’S LAWS OF MOTION 
 
The behaviour of particles is governed by Newton’s Law of motion (17th century).  
 
1st Law : Every object in a state of uniform motion tends to remain in that state of motion unless an 
external force is applied to it. 
 
2nd Law: The relationship between an object's mass m, its acceleration a, and the applied force F is F 
= ma. The direction of acceleration is the same as the direction of the applied force. 
 
3rd Law: For every action there is an equal and opposite reaction. 
 
Molecular dynamics - We can calculate the force on each atom in the molecule and use Newton’s 2nd 
law to predict where each will move to after a short time. We can then repeat the calculation to build up 
a model of how the atoms in the molecule moves. This gives us information about the range of 
structures that a molecule can adopt and the dynamic properties (flexibility) of these structures. 
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CHARGED SPECIES IN AN ELECTRIC FIELD 
 
A charged species in an applied electric field, Φ, will have an additional potential energy term due to 
its position in the field. A positive charge will be lower in energy in a negative electric field and higher 
in energy in a positive electric field. 

E = q×Φ 
A charged species in a field gradient will experience a force tending to make it move up or down the 
gradient (depending on its charge). 

d
F q

dr
Φ

= ×  

 
 

ELECTROPHORESIS 
 
In electrophoresis, a charged molecule is placed in a medium (usually a gel) and an electric field 
gradient applied to the gel. The molecule experiences two forces; 

1. an electrostatic force in the direction of the field gradient. 
2. a frictional force in the opposite direction to motion, F=f×v, where f is the frictional 

coefficient which depends on the interaction between the molecule and the medium. 
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The molecule will initially accelerate in the direction of the electrostatic force until its velocity is 
sufficient for the frictional force to balance the electrostatic force. At that point the molecule will 
continue moving at constant velocity, veq. 

eq

eq

d
q f v
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v q

Electrophoretic mobility ( ) =
d dr f

Φ
× = ×

µ =
Φ

 

µ depends on the charge, size and shape of the molecule. 
 
 
A dipole will tend to align with an electric field. 
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Summary so far … 
 

• Classical mechanics can be used to explain the macroscopic world. 
• The classical world consists of particles and waves 
• The behaviour of classical particles is governed by Newton’s Laws. 

 
 

CLASSICAL MECHANICS 
 
Properties of a particle : 

• It has mass 
• Its position in space can be defined completely at any point in time (x, y, z co-ordinates or 

their equivalent). 
• Its energy (given by the sum of kinetic and potential energies) can be defined completely at 

any point in time. 
• It can have any amount of energy from zero to infinity. 

 
Properties of a continuous wave : 

• It extends from +∞ to -∞ and thus by definition has no position. 
• It has no mass. 
• It has a well defined frequency. 
• Its energy is related to its intensity. 
• As a wave can have any intensity, it can have any energy from zero to infinity. 

 
 

BREAKDOWN OF CLASSICAL MECHANICS 
 
Waves can behave as particles :- 

• Shining light on a metal surface can provide a measurable force. Light has momentum and 
thus mass. 

 
The energy of light does not depend on its intensity but its wavelength :- 

• Shining light on a metal surface can cause electrons to be emitted. Using long wavelength 
light, even at very high intensity, does not produce electrons. Using short wavelength light, 
even at very low intensity, does produce electrons. At higher intensity more electrons are 
produced but each electron still has the same amount of residual kinetic energy. At shorter 
wavelength each electron produced has more residual kinetic energy.  

 
Particles can behave as waves :- 

• Electrons, neutrons and hydrogen nuclei can be diffracted by using an atomic diffraction 
grating (crystal) in exactly the same way that light can. They are not scattered randomly in all 
directions, but behave as though they are interacting waves. 

 
Particles do not posses continuously varying energy :- 

• Rotational, vibrational and electronic spectra of molecules consist of radiation emitted or 
absorbed at a series of discrete frequencies. Thus, molecules cannot rotate, vibrate, etc., at any 
speed but only at selected, predefined speeds. 

 
 

WAVE-PARTICLE DUALITY OF EVERYTHING 
 
As we have seen, particles can behave as waves and waves can behave as particles. Thus, the starting 
point is to come up with a description of matter and energy that explains this. It is probably easier to try 
and make a wave behave like a particle than visa-versa. Thus, we use a simple wave as a starting point.  
 

• Everything will be described as a wave or collections of wave.  
This description is called a wavefunction. 

• Waves have mass.  
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This means that waves (and anything made by adding waves together) can have 
momentum. 

• Particles will be described as wave-packets.  
This leads directly to the Uncertainty Principle and Zero-point energy.  

• The energy of a wave-packet depends on its wavelength, not its intensity. 
The intensity is a measure of the number of wave-packets. 

• Localisation of waves (or applying boundary conditions) gives rise to quantisation of energy 
(or energy levels).  

 
The mathematical formalism of this is the Schrödinger equation (which we shall ignore). 
 
 

WAVES AND PARTICLES 
 

Superposition of an infinite 
number of waves

Superposition of seven waves 

Superposition of three waves

Pure wave

 
 
Anything (light, electrons, nuclei, chairs, tables, etc.) behaves as a wave or a collection of waves. This 
is called the wavefunction of the object, usually given the symbol Ψ. Obviously, the more complex the 
object is, the more complex will be its wavefunction. For a wave, the square of Ψ at any point in space 
is simply its intensity - this is the same as classical mechanics. We use the square of the wavefunction 
because Ψ can be negative but we can’t have a negative intensity. 
 
Wave/Particle duality :- 
 
For a “classical particle” (such as an electron) the square of Ψ at any point in space can be interpreted 
as the probability of finding the particle at that point [called the Born interpretation]. Usually we have 
to normalise the wavefunctions, so that the total probability of finding a particle somewhere in space is 
one. This does not mean that classical particles exist, they don’t, it is simply a method of translating the 
wave properties of a particle into the classical properties that we find it easier to visualise. 
 
 

THE DE BROGLIE RELATION 
 
De Broglie provided a relationship between the momentum (p) of a particle and the wavelength (λ) of 
its associated wave (called the de Broglie wavelength).  
 

λ = h / p 
 
where h is Planck’s constant. The kinetic energy (E) of a particle of mass m is given by; 
 

E  =  ½ mv2  =  (mv)2 / 2m  =  p2 / 2m 
 
These two equations can be combined to give; 
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Consider an electron, mass of 9.109 x 10-31 kg, which has been accelerated to a velocity of 0.6 x 106 
ms-1 (equivalent to an accelerating potential of approximately 1 V). The de Broglie wavelength is 
given by; 

( ) ( )
-34

-31 6

h h 6.626 x 10
 =  =  = 

p m v 9.109 x 10  x 0.6 x 10
λ  

Thus; 
λ = 1.2 x 10-9 m     or     1.2 nm 

This is long compared to a typical chemical bond (0.1 nm) but short compared to the size of cell 
structures (such as membranes). So an electron microscope using electrons at this speed should be able 
to (and can) resolve major cellular components and membrane structure. 
 
For an electron which has been accelerated to a velocity of 20 x 106 ms-1 (equivalent to an accelerating 
potential of approximately 1 kV), then; 
 

λ = 0.036 nm 
 
This is about one third the size of a typical chemical bond. So an electron microscope using electrons at 
this speed should be able to (and can in favourable cases) resolve the atomic structure of molecules.  
 
 

HEISENBERG’S UNCERTAINTY PRINCIPLE 
 
A pure wave has an absolute energy (the frequency is known) but the position is totally undefined. 
 
A wave packet has an approximate position (not fully defined because it is spread out somewhat) and 
an approximate energy (not fully defined because a summation over many frequencies is required). The 
more frequencies we use, the better the position is defined and the worse the energy. 
 
A classical particle has an absolute position (it exists at a single point) but the energy is totally 
undefined (to determine the energy requires the summation of an infinite number of frequencies). 
 
This leads to one statement of Heisenberg’s Uncertainty principle, which is; 

“It is impossible to specify simultaneously, with arbitrary 
precision, both the energy and the position of a particle.” 

This can be expressed quantitatively as follows; 
∆p × ∆q  ≥  ½ h 

where; 
 

∆p -- uncertainty in momentum 
∆q -- uncertainty in position 
h -- Plank’s constant (h) divided by 2π 

 
This principle applies to many different pairs of quantities as well, such as energy and time. 
 
Consider a 65 kg person (not very large) running at 10 ms-1 (i.e. very fast). If his/her velocity is known 
to an accuracy of 0.001 ms-1 (about what can be measured on a running track), then the uncertainty in 
his/her position is; 

∆q  = h / 2∆p  = h / 2m∆v  =  8.1 x 10-34 m 
This is not a significant number. 
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If we consider a molecule of molecular weight 100 (g mol-1) travelling at the same speed, then the 
uncertainty in its position is; 

∆q  = h / 2.(M.Wt . x 10-3 / A).∆v  =  3.2 x 10-7 m 
where A is Avogadro’s number. This is a significant number, over 100 times bigger than the molecule. 
 
 

ZERO POINT ENERGY 
 
One important implication of the Heisenberg Uncertainty Principle is the idea of zero-point energy. A 
particle must always retain a small amount of energy in some form even at absolute zero (0 K), called 
the zero-point energy. If a particle was completely still then both its energy (zero) and its position 
would be completely known and this contradicts the Uncertainty Principle. Alternatively, if a particle’s 
energy is zero, then the uncertainty in its momentum (∆p) must be zero and thus the uncertainty in 
position (∆q) is given by; 
 

∆q  ≥ h / 2∆p  ≥ h / 0  ≥  ∞ 
 
Thus, the particle must exists everywhere in the Universe at once (assuming the Universe is infinite). 
 

 



Classical and Quantum Mechanics 4 

-- 1 -- 

Summary so far … 
 

• Classical mechanics doesn’t work. Particles can behave as waves and visa versa. 
• Everything can be described as a wave or a wave packet. A wave packet has the properties of 

both a wave and a particle. 
• This description of an object is called its wavefunction. 
• The wavelength of a “classical particle” can be determined from its momentum using the de 

Broglie relationship. 
• Heisenberg’s uncertainty principle and the idea of zero point energy are direct consequences 

of the wave nature of matter. 
 
 

BOUNDARY CONDITIONS AND THE QUANTISATION OF ENERGY 
 
A continuous wave (going from -∞ to +∞) can have any wavelength and so can have any energy. 
Similarly, a particle that is completely free can have any energy. Once a wave or particle becomes 
localised to a specific region of space (i.e. boundary conditions are applied that restrict its motion) then 
only certain wavelengths are allowed. Waves with other wavelengths cannot exist under these 
boundary conditions. As energy depends on wavelength, only certain energies (energy levels) are 
possible. This is the quantisation of energy.  
 

Application of boundary 
conditions 

⇒ Quantisation of 
energy 

 
 

A WAVE (OR PARTICLE) IN A BOX 
 

0 0.2 0.4 0.6 0.8 1 0 reflections

 

  

0 0.2 0.4 0.6 0.8 1
4 reflections

0 0.2 0.4 0.6 0.8 1
4 reflections

0 0.2 0.4 0.6 0.8 1
4 reflections

 

0 0.2 0.4 0.6 0.8 1

infinite
reflections

 
 
 

The allowed wavefunctions for a particle in a box must be zero at each edge of the box. Then the 
reflected wave always adds to the initial wave. Thus, the allowed wavelengths must satisfy the equation  
 

L = ½ n λ  
 

0 0.2 0.4 0.6 0.8 1

Distance

n=1

n=4

n=3

n=2
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where L is the length of the box, and n is an integer. 
 
 

QUANTUM NUMBERS 
 
In the case of a particle in a box, there are an infinite number of allowed wavelengths, for all the 
possible values of the integer n.  

n is called a quantum number. 
A particle in a box is simply a one-dimensional problem, thus we only need one quantum number to 
describe the system. 

A quantum number tells us something about the shape of the allowed wavefunction. 
For the particle in a box, there are (n-1) nodes for any given wave. As the energy of a wave depends on 
its shape, quantum numbers can be used to help calculate the energy.  
 
 

ENERGY LEVELS FOR A PARTICLE IN A BOX 
 
As only certain wavelengths for the particle in a box are allowed, the particle can only have certain 
specific energies. Its energy is quantised. 
 
From the de Broglie relation; 

2

2

h
E = 

2mλ
 

For a 1D box, L = ½ n λ, thus; 
2 2

2

n h
E = 

8mL
 

 
In order to move from one level (n) to a higher level (n’), the correct amount of energy (∆E) must be 
put in. 

( )2 2 22 2 2 2

2 2 2

n -n hn h n h
E =  -  = 

8mL 8mL 8mL

′′
∆  

If the available energy does not match this criterion, then it cannot be absorbed. 
 
Note -- the spacing of the energy levels depends on the size of the box. If L is very large, then the 
energy separation is very small and visa versa. This is a general property of waves, the smaller the 
region over which the boundary conditions apply, the greater the energy separation. 
 
 

ENERGY LEVELS IN MOLECULES 
 
Molecules can have many different types of energy and nearly all of them are quantised. The more 
localised a wave the greater is the separation between energy levels and the smaller the mass the 
greater the separation. 
 

Nuclear energy levels  Involve protons and 
neutrons in the nucleus 

Very, very large energy 
separations  
10,000,000 cm-1 

Electronic energy levels  Involve electrons close to 
nuclei 

Very large energy separations  
10,000 cm-1 

Vibrational energy levels Involve a few atoms in the 
molecule 

Medium energy separations 
500 cm-1 

Rotational energy levels Involves the whole 
molecule 

Small energy separations 
5 cm-1 
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Translational energy levels Involves the whole 
molecule moving over 
large distances 

Effectively a continuum 
(not quantised) 

 
 

BOLTZMANN DISTRIBUTION 
 
When we consider chemical systems, they are made up of a very large number of molecules. The 
thermal collisions between molecules (Brownian motion) mean that energy can pass from one molecule 
to another. Thus, they will not all have the same energy but there will be a random distribution over the 
available energy levels, given that the total energy must be constant. The Boltzmann distribution states 
that at a given temperature, T, the ratio of the number of molecules with energies Ei and Ej is given by;  

i ji

j

-(E -E )n
 = exp

n kT
 
 
 

 

where k is the Boltzmann constant. Note: ni must always be less than nj if Ei is greater than Ej (i.e. the 
lower state is always more populated. 
 
An alternative way of expressing the Boltzmann distribution is as the probability, P(Ei), of a molecule 
having a specific energy, Ei. This is given by; 

( )
( )

i

j

-E
kTi

i -E
kT

j

expn
P(E ) =  = 

N exp∑
 

where N is the total number of molecules and the summation is taken over all occupied energy levels. 
Note: as before if Ei gets bigger, P(Ei) gets smaller. 
 

P(E)

E

T=T1

T=5×T1
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Consider the following typical separations between energy levels relevant to three different types of 
spectroscopy; 

NMR ∆E = 1.19 x 10-2 J mol-1 
Rotational ∆E = 11.9  J mol-1 
Electronic ∆E = 119 x 103 J mol-1 

As ∆E is in J mol-1, we have to divide by Avogadro’s number (L) to give ∆E in J per molecule. Thus; 

upper

lower

n - E
 = exp

n LkT
∆ 

 
 

 

At room temperature, this gives the ratio for nupper to nlower as follows; 
NMR 0.9999952 
Rotational 0.9952 



Classical and Quantum Mechanics 4 

-- 4 -- 

Electronic 1.86 x 10-21 
The excited energy levels for both NMR and rotational spectroscopy are populated at room temperature 
whilst very nearly all molecules are in the electronic ground state.  
 
The sensitivity of a spectroscopic technique depends on the population difference between the ground 
and excited states. If this difference is small then only a few molecules can be excited before the 
system becomes saturated (the same number of molecules in both states). At room temperature, the 
ratio for nupper to nlower are as follows; 

NMR 0.9999952 
Rotational 0.9952 
Electronic 1.86 x 10-21 

For NMR only one molecule in every one hundred thousand will give a signal, whereas in electronic 
spectroscopy every molecule will give a signal. Thus, electronic spectroscopy is potentially one 
hundred thousand times more sensitive than NMR.  
 
 

MAXWELL-BOLTZMANN DISTRIBUTION 
 
When considering the translational motion of molecules, the situation is slightly more complex because 
molecules can move in three dimensions. However, we are usually interested in how fast a molecule is 
moving, not in which direction it is going. 
 

Velocities in any one 
dimension 

⇒ Boltzmann 
distribution 

 
To get the distribution of speeds, we need to consider the sum of the probabilities in all three directions. 
This tends to emphasise medium speeds. 
 

Low speed Must be going slowly in all three 
dimensions 

Low probability 

Medium speed Could be; 
1.going slowly in two dimensions 
and fast in onegoing a medium 
speed in all three dimensions 

High probability 

High speed Must be going fast in all three 
dimensions 

Low probability 

 

The velocity in 1D is given by 
the Boltzmann distribution

The speed in 3D is given by 
the Maxwell-Boltzmann

distribution

This distribution changes as 
the temperature changes

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

V e l o c i t y

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

S p e e d

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

S p e e d

T 1

T 2

T 1  <  T 2
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Summary so far … 
 

• Classical mechanics doesn’t work. Particles can behave as waves and visa versa. 
• Wave theory leads directly to the Uncertainty Principle and the idea of Zero-point Energy. 
• Localisation of a wave (applying boundary conditions) results in only certain wavefunctions 

being allowed. These are characterised by quantum numbers. This leads to the quantisation of 
energy. 

• The probability of finding a molecule in a specific energy state is given by the Boltzmann 
distribution. 

• When considering translational motion in three-dimensions rather than one, the range of 
speeds is given by the Maxwell-Boltzmann distribution. 

 
 

WAVE PICTURE OF AN ATOM 
 
Electrons behave as waves and are localised around the nucleus. As they are localised waves, only 
certain wavefunctions will be allowed and so their energies will be quantised. These allowed 
wavefunctions are called atomic orbitals. As atoms are small and electrons have a very small mass, the 
energy separation between allowed states will be large. The energy of an electron in an orbital is 
determined by the electrostatic interactions with the nucleus and with other electrons. 
 
Electrons orbit the nucleus of an atom and so can be considered as particles on the surface of a sphere. 
We can treat this problem in an identical way to that of a particle in a box, but as a sphere is a bit 
difficult to visualise we will start with a wave on a circle.  
 
 

QUANTISATION OF WAVES ON A CIRCLE 
 
For a wave of arbitrary wavelength; 
 
 
 
 
 
 
 
 
 
 
 
As before the superposition of many 
waves will lead to perfect 
cancellation, unless the waves 
always add. This will happen if the 
circumference of the circle is an 
exact multiple of the wavelength. 
 
 
 
 
 

ALLOWED WAVES ON A CIRCLE 
 
These are based on the allowed wavefunctions of a particle on a sphere (the three dimensional 
equivalent of a particle on a circle). The angular quantum number for a particle on a circle is l, which 
gives the number of angular nodes.  
 
 
 

Superposition of 2 waves Superposition of 5 waves
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ORBITAL QUANTUM NUMBERS 
 
 

Quantum number Value Description 

n 0,1,2, .... radial Distance from the nucleus 

l 0,1,...,(n-1) angular Number of angular nodes 

m 0,±1,...,±l angular Angular direction 

 
These three are exactly analogous to simple polar co-ordinates (r,φ,ψ). However, they do not give the 
exact spatial co-ordinates of the electron (as polar co-ordinates do in classical mechanics) but instead 
give the probability that an electron will be found at that point in space. 
 
 

ORBITAL SHAPES 
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ORBITAL ENERGIES 
 
The energy of a given orbital depends on the electrostatic interactions that occur between; 

1.  The electron and the nucleus (attraction) 
2.  The electron and other electrons (repulsion) 

in the atom. These electrostatic interactions depend on the distances between the electrons and nucleus 
and thus on the shapes and sizes of the orbitals. 
 
For the orbitals within a specific atom; 

• The closer the electron is to the nucleus (smaller value of n) the lower the energy. 
• The more diffuse the orbital (smaller value of l) the less electron-electron repulsion there is. 

 
This leads to the general order; 

1s < 2s < 2p < 3s < 3p < 3d 
for any atom with more than one electron. 
 
Examples –  
 
The 2s orbital in H is at the same energy as the 2p orbital because there is only one electron and so 
electron-electron repulsion is not relevant and energies are only determined by distance from the 
nucleus. 
 
The 2s orbital in Li is at a lower energy than the 2p orbital because there is now more than one electron 
and there is greater electron-electron repulsion for an electron in a 2p orbital (l=1) than in a 2s orbital 
(l=0) 
 
 

RELATIVE ORBITAL ENERGIES IN DIFFERENT ATOMS 
 
For a given atomic orbital (n, l, m), the only difference between atoms is the nuclear charge and the 
number of electrons. The increased attraction from the larger nuclear charge always outweighs the 
increased repulsion from more electrons. 
 
Examples – 
 
The 1s orbital in Li is lower in energy than the 1s orbital in H because the atomic charge of the former 
is greater (3 compared to 1). 
 
The 2s orbital in Li is at about the same energy as the 3s orbital in Na because the increase in distance 
for the latter (n=3 for Na compared to n=2 for Li) and increase in electron-electron repulsion (there are 
10 other electrons present in Na compared to 2 in Li) is counterbalanced by an increase in nuclear 
charge (11 for Na compared to 3 for Li). 
 
 

ELECTRON SPIN 
 
Electrons have an extra property i.e. they have a magnetic moment. This arises from the internal 
motion of the electron (not the motion around the nucleus), called the electron spin.  
 

Quantum number Value Description 

s ± ½ Direction of the internal motion of the electron 

 
 

PAULI EXCLUSION PRINCIPLE 
 

“No two electrons can have the same set of quantum numbers” 
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i.e. no two electrons can continuously occupy the same space. If they do occupy the same space (n, l 
and m the same), then their time evolution (s) must be different. This means that only two electrons can 
occupy any one orbital. Another implication of the Pauli Exclusion Principle is that electrons in the 
same shell (n, l) with the same spin will repel each other less than those with opposite spins, i.e. two 
electrons in the same shell with the same spin are more stable than with opposite spins. 
 
 
 

AUFBAU (BUILDING UP) PRINCIPLE 
 
The electron configuration can be determined by always putting the next electron into the lowest 
energy orbital available. This will give the ground state (lowest energy state) for the atom. 
 
Given the large energy separation between orbital energy levels, only the ground state will be 
populated at normal temperatures. 
e.g. 

H 1 electron 1s1 

He 2 electrons 1s2 

Li 3 electrons 1s2 2s1 

F 9 electrons 1s2 2s2 2p5 

Si 14 electrons 1s2 2s2 2p6 3s2 3p2 
 
For part filled orbitals, the electrons will prefer to be unpaired. 
 
 

VALENCE ELECTRONS AND CHEMISTRY 
 
Valence electrons are the electrons that can be involved in bonding. These are the highest energy 
electrons, i.e. the electrons in the highest energy atomic orbitals. 
 
The chemical properties of an element are determined by the: 

• number of valence electrons; 
• energies of the valence electrons; 
• size and shape of the atomic orbitals containing the valence electrons. 

 
The energies of the valence electrons: 

• decrease rapidly across the periodic table; 
• increase slowly down the periodic table. 

 


