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0 Lecture summary

Here, we will discuss two real experimental
case studies investigating “established
bionanotechnology” in living bacterial cells
which use “optical proteomics” in the form
of advanced fluorescence microscopy to
monitor functional molecular machines
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What is it to be
“established bionanotechnology”?

Machines in the living cell built from a
few, discrete molecular components —
so-called “molecular machines”

They’re small — length scale of single cell is
~1 million times smaller than human body.
Length scale of these machines is ~1000
times smaller a single cell. “Nanomachines”

They work by transducing energy in
response to biological stimuli in order to
perform “useful” work

They are the drivers of the fundamental processes in a living cell

OXFORD OPTICAL PROTEOMICS

0 Size matters

The “nanometre” length
research

scale of these machines, enfibody light ' scientist

. 0C . an
~100 times smaller than  water '@ & bacteria x
the wavelength of light, m°'e°“"1 f‘ l ?"’\! ¢ i car
means that they are highly <€ | | 1 | >
sensitive to motions of tnm(=10"m Tum(=10"m)  1mm(=10°m) tm

molecular

surrounding molecules, machines

notably water in living cells

rotation < f
Molecular machines have movemig%'%g/ ovement
of air Flagaliam—lon CT"ngio cel
Prog N Outer

similarities to everyday —
“macro” scale machines we
are familiar with, but are
fundamentally different in
being immersed in a
“thermal bath”

OXFORD OPTICAL PROTEOMICS




Why study molecular machines in living cells
when we can use the test-tube?

The test-tube system is a much
reduced version of the living cell

Cells have spatial and temporal localization
A cell’s physical and chemical environment -

is difficult to replicate

In the living cell, copy numbers often low

Ultra-sensitive fluorescence microscopy can be
minimally perturbative, may use highly specific
tags and offers single molecule precision
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P Lecture outline

“Test-tube” imaging: “

“Live-cell” imaging:
Imaging time scale:

Measuring molecular composition ~100-1000ms

Characterizing molecular dynamics ~10-100ms
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What is “fluorescence”
)/

Fluorescence is the process of absorption of electromagnetic
radiation followed by rapid emission light of longer wavelength

(within nanoseconds):
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Single fluorophores can undergo
step-like bleaching

TIRF evanescent field
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PA stoichiometry assay based
on stepwise photobleaching
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Normalised Occurrence
Power per Hz
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S\*y Imaging at 100s of milliseconds per frame:
bacterial motor proteins i etal noture 443, 3555, (2006)

Courtesy of Howard Berg, Rowland
Institute, Harvard University, USA

)/

GFP-MotB (E. coli)

Courtesy of Keiichi Namba, Protonic Courtesy of Michio Homma, Nagoya

Nanomachine Project, Osaka University, Japan University, Japan OXFORD OPTICAL PROTEOMICS

“Bespoke” microscopy can help us
“see” single molecules:
Total-internal-reflection-
fluorescence (TIRF) microscopy
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Visualizing functional machines in the cell membrane
evanescent — >
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Quantifying stoichiometry in molecular machines
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Measuring dynamics

Diffusion in membrane:

Molecular turnover in motor:
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Detection and tracking

Brightfield image Generate masks Fluorescence image Apply masks Autofind spots

Simulate Bessel point spread function
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Thompson, Larson, Webb Biophys J 82, 2775 (2002).
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®Diffusion of membrane machines: simulation

Epifluorescence
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éln pursuit of “real time” imaging
inside the cell

What do we mean by “real time”?

sampling data at least as fast as the process we are studying

In far-field a static emitter seen as a spot of intensity of
point spread function width w (~0.61A/NA), or ~250-300nm

distance
e

—1pm Airy disks

If emitters are mobile and move distance d during image
frame of time At, we will only see them “unblurred” if ~d<w
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QWhat is the maximum allowed At?

d~ \/(mean-squared displacement, R?)
1-dimensional diffusion R?= 2DAt
2-dimensional diffusion R?= 4ADAt
3-dimensional diffusion R?= 6DAt

Typical membrane protein (2D) diffusion D ~(1-20) x 10-3 um?/s...
maximum At ~100ms
Cytoplasmic protein (3D) diffusion D ~5 pum?/s...

maximum At ~3ms.

Video-rate microscopy (At=40ms) OK for imaging machines in
membranes, but not inside cells
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&DNA replication in bacteria is performed by the

“replisome”: cytoplasmic imaging needed
The replisome is a complex molecular machine
bound to the nucleoid in the cytoplasm, and a
good example of established bionanotechnology

It replicates DNA by copying
the leading-strand template continuously

and the lagging-strand template '
SEINE g (@# \Wondershare

discontinuously (in Okazaki fragments). DNA Replication
(Camera Above)

It couples the activities of more than 11 .
Duration: 0'18

proteins during genome replication File Size: 1.2 MB
Contact: wehi-tv@wehi.edu.au

The sub-units include in effect “sub-
machines”: primases and helicases, clamp
loaders and sliding clamps, DNA
polymerases, and components to stabilize
single-stranded DNA
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Using “slimfield” to monitor DNA replication:
imaging at the millisecond level

Reyes-Lamothe, Sherratt & Leake Science 328, 498-501(2010).
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Stoichiometry and shape in the replisome machine
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Future challenges: machines in more complex cells -
can we address more directly biomedically relevant
examples of established bionanotechnology, or cases
where this technology has gone wrong?

Putting GFP into colorectal cancer cells

Tagging a molecular machine called the “EGF receptor”

implicated in cancer formation
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Future challenges: multi-colour imaging sees different
parts of a molecular machine at the same time
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QConclusions

The optical properties of single fluorescent protein
molecules can be used to measure the composition
of molecular machines in living cells

10" counts

e or
P

Molecular mobility and turnover can be
measured as it actually happens

E. coli
Y sample

Slimfield
We can achieve very fast millisecond imaging using
simple microscopy modifications, fast enough to
follow very fine mechanistic details of these
molecular machines
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