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ABSTRACT 

Automated tracking of fluorescent particles in living cells is 
vital for subcellular stoichoimetry analysis [1, 2]. Here, a 
new automatic tracking algorithm is described to track 
multiple particles, based on minimal path optimization. After 
linking feature points frame-by-frame, spatio-temporal data 
from time-lapse microscopy are combined together to 
construct a transformed 3D volume. The trajectories are then 
generated from the minimal energy path as defined by the 
solution of the time-dependent partial differential equation 
using a gray weighted distance transform dynamic 
programming method. Results from simulated and 
experimental data demonstrate that our novel automatic 
method gives sub-pixel accuracy even for very noisy images. 

Index Terms— fluorescence microscopy, particle 
tracking, energy function, gray weighted distance transform 

1. INTRODUCTION 

Tracking fluorescently-tagged nanoparticles in living cells 
allows monitoring of the dynamics of vital subcellular 
structures. While Green Fluorescent Proteins (GFP) and its 
variants offer enormous potential for increasing our 
understanding of biological processes [3], they also bring 
challenges for quantitative analysis requiring efficient 
techniques to evaluate enormous data flow. Manual methods 
are time consuming and susceptible to user bias; automatic 
tools for time-lapse microscopy are essential for 
quantization and systematic study of heterogeneous 
biological systems, e.g. estimating the diffusion coefficient 
of proteins [1] or investigating molecular turnover [2] in 
vivo. 

Traditional approaches depend on locally correlated
information by linking feature points directly. Nearest 
neighbor methods are simple but very sensitive to noise. 
Statistical methods use probability density functions for 
matching a variable number of feature points by integrating 
of spatial and temporal information. MHT [4] is difficult to 
be applied directly because NP-hard methods prohibit fast 
computation. The computational complexity of Particle filter 
[5] increases very much as well. With the effective prior 

knowledge about object dynamics, the possibility method 
such as Bayesian estimation [6] is more effective for 
tracking accuracy, and generalized likelihood ratio test [7] is 
shown to provide good tracking result in single-particle 
tracking. Heuristic methods [8, 9] are deterministic 
algorithms and can be used to identify putative tracks from 
qualitative descriptions, but suffer the disadvantage in 
relying critically on the accuracy in the detection stage and 
easily fail when ambiguities occur. To overcome errors from 
failed detection or transient disappearing particles, 
additional methods are required. Improvements are made in 
considering the image stack as a 3D volume and 
transforming the problem into finding the minimal energy 
path. Typical approaches include fast marching method to 
resolve the energy function for single-molecule tracking 
[10]. Only considering the positive force, [11] uses the 
similar method as [10] in path planning approach to control 
the zero level set for tracking cells. In [12] a special 
correlation formulation is described between the spots from 
continuous frame and then is applied to resolve the energy 
function. The linear assignment problem solution provides a 
generalized method based on exacted function to resolve the 
energy function [13]. These methods are comparatively 
robust to deal with ambiguities due to object fusion, missing 
detection and appearance/disappearance of multiple targets 
in fluorescence particle tracking.   

Here, we combine spatial and temporal information by 
considering the fluorescence image stack as a single 3D 
volume and propose a new method for viewing particle 
trajectory as 3D curves within this spatio-temporal volume. 
The question of particle tracking is then transformed into 
finding minimal paths in an image-dependent metric from an 
energy minimization technique. The energy function is 
defined by the time-dependent and the function is solved 
using the gray weighted distance transform (GWDT). The 
tracking system exploits a two-level design: linking and 
association. The bottom level is responsible for connecting 
possible spot features by monitoring their displacement into 
track segments in a successive frame-by-frame manner, 
resulting in truncated track segments of whole of 
trajectories. The top level then fuses segments and co-
ordinates outputs to obtain the intact full trajectory. Our new 
approach culminates in similar results to those of earlier 
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studies [10-12] but offers a significant advantage in being 
shorter in computational complexity and requires far less 
computer time. 

2. METHODS 

When considering two-dimensional fluorescent image 
( )yxI ,  changing with the time t  in a stack, a single three-

dimensional (3D) spatio-temporal volume ( )tyxV ,,  will be 
constructed, so that the particle trajectories can be viewed as 
a 3D curve in this representation [10]. As a result, minimal 
paths can be found by energy minimization [14]. The cost 
function defined is a function of time so the solution of this 
equation represents the arrival time from starting point cp
through moving point p  to destination point q .  

{ }),,(inf),(
),(

tyxVqpu
Vqpc ∈

=   (1) 

),( qpu c  is the minimal energy path, which also 
implies minimum arrival time along a path ( )qppc

inside the spatio-temporal volume ( )tyxV ,, . 
When the speed of the front is uniform within the 

volume, the arrival time is proportional to the minimum 
distance, GWDT [15] will provide one solution for above 
equation, which provides a single pass algorithm and whose 
value at each pixel gives the maximal sum of distances from 
the light sources weighted by the gray values in the 
reflective index field. 

The grid points in discrete space can be selected as the 
max-sum difference (u) between neighboring pixels: 
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Ω  is the connected local region with specified gray weights 

( )⋅w  for each element p . The sum of local maximal 
distance between a pixel p  and the first pixel element in the 
grid is determined according to the distance transform 
image. 

Firstly the original gray intensity volume is shown in 
Fig 1 (a), secondly a distance transform volume is defined, 
where each pixel is allocated a new distance value. Here, we 
apply the chessboard distance transform in Fig 1 (b) and this 
volume will be regarded as the reference marker to point out 
the potential evolution direction in the following step. By 
using the gray values as weights and comparing the maximal 
intensity sum from adjacent voxels, all of the optimal paths 
from bottom to top layer through the 3D spatio-temporal 
volume are calculated based on the upwind propagation 
principle and constructed as a new volume named potential 
optimal path volume shown Fig 1(c). Lastly the optimal path 
including the heading and tailing point provides a sequence 
of points as associated trajectory from the bottom to top  

Figure 1. Illustration of optimal path construction during the trajectory 
association process. Every displayed image is a sectioned view of the stack 
showing the x-z plane where the motion occurs. (a) Fluorescence image. 
(b)  Distance transforms image. (c) Optimal path image. (d) Reconstructed 
trajectory by minimal energy path. 

Figure 2. GWDT algorithm to find the minimal energy path from the 
spatio-temporal volume for trajectory association. 

layer shown in Fig 1(d). The detailed GWDT Algorithm for 
trajectory association is listed in Figure 2. This algorithm is 
recursive and belongs to a dynamic programming approach. 

Nominally we assume movement smoothness for our 
tracking method since the particles come from some kind of 
random diffusion system. As the final detected trajectory is 
limited within a fairly direction path, this condition prohibits 
the combinational explosion during volume construction to 
collect optimal paths in the GWDT. We define a “bounding 
box” whose center in the bottom layer is the starting point, 
thus all potential candidates in each frame are considered 

A. Initialization phase 
1. Intensity volume: reconstructed from time-lapse image 
stacks. 
2. Distance volume:  cumulative cost matrix defined by 
distance transform. 
3. Edge volume: all zero volume except the spatial elements, 
whose position corresponds to the maximal value in 
distance volume and they have the original gray value. 

B. Loop phase 
From the non-zero element in edge volume, for each 
neighboring voxel in 6-connectedness in a 3D volume:  
• If the sum of gray intensity of the nearest-neighbor 

according is larger than existing maximal sum by 
equation (2), the selected voxels are inspected. The 
maximal sum of this intensity is saved into the optimal 
path volume for further consideration.   

• If the voxels that do not have maximal sum from 
nearest-neighbor pixels, they are left unassigned. 

C. Termination phase 
The optimal path volume is obtained, from which the path 
connecting starting point and end point are extracted as the 
associated trajectory. 
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within this limited box and the investigated paths still 
provide good approximations. In our applications, we select 
five pixels as the maximal distance between continuous 
frames. 

3. EXPERIMENTS AND RESULTS 

3.1 Evaluation of simulated data 

To evaluate the quality of our tracking algorithm and its 
suitability to biological data, we generated artificial 
sequences (128pixel×128pixel×30frame). The image was 
created based on Gaussian profiles for objects and Gaussian 
background noise with different standard deviations to 
simulate different levels. The positions of the visual particles 
are controlled by the random diffusion model, and the spots 
were made to move randomly and their direction changed 
randomly at a random time Dtr 42 = , where r is the 

distance from the origin to next point and its position varies 
with temporal parameter t , and D  is the diffusion 
coefficient. In our experiments, particle velocity is limited to 
1-3 pixels/s. It is also important to characterize the 
adaptation for different fluorescent phenomena such as 
fluorescent blinking, so spots were allowed to temporally 
aggregate and cross on several frames.

The level of the noise is characterized by the peak-
signal-to-noise ratio (PSNR). We then use the root mean 
square error (RMSE) to evaluate the accuracy of the 
tracking. Fig 3 (a) displays the performance of the tracking 
algorithm when the image is affected by noise. Fig 3 (b) 
provides the tracking accuracy for five individual 
trajectories. We find that at PSNR<7dB the accuracy is no 
longer sub-pixel, the main reason is that the detected 
particles are not connected correctly during the linking 
process making it hard to decide whether the segmented 
trajectories should be connected or not subsequently. 
Figure 4 displays two tracking results with different intensity 
profiles of five generated particles. It can be seen that the 
automatic tracking result is continuous during the whole 
sequence and can deal with the merging and splitting 
correctly: since this result stems from tests on  simulated 
data we know that the total number of objects should be 
fixed, and their trajectories should be continuous from the 
beginning to the end of frame; “continuous” indicates that 
the number and length of trajectories is fixed such that any 
new trajectory and new length observed must indicate an 
error of the detection algorithm, which comes from either 
“splitting” (incorrectly generating two apparent trajectories 
from a single track) or “merging” (incorrectly combining 
two trajectories into a single track). Figure 5 shows mean-
square displacement (MSD) curves corresponding to the 
movement of particles in Figure 4 and shows that the visual 
motions are confined in a specified volume consistent with 
the diffusion coefficient defined in our simulated system.
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Figure 3. (a) RMSE on the trajectories with the varying PSNR. (b) 
Tracking error for five simulated trajectories. 

  

Figure 4. Tracking of simulated particle sequences with different intensity 
profile and noise levels. Overlayed on 2D original image (left) and its 3D 
trajectories (right). 
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Figure 5. Average MSD for five simulated particles. By doing a linear fit to 
these traces we found that the predicted and assigned diffusion coefficients 
always agreed to within better than ~10%. 

3.2 Evaluation of experimental data 

We applied our methodology to dynamic analysis in real 
data from video sequences which contain ~100 living
bacterial cells (E. coli strain WX103 labeled with 
fluorescent proteins TetR-YFP and LacI-CFP) using image 
sequences with dimension 512×512×30. Results are shown 
in Figures 6 and 7. It can be seen from these that the 
fluorescent blinking can be overcome effectively even with 
skips of several frames. The integrated and continuous 
trajectories can be obtained using our algorithm, to a similar 
standard as earlier methods [10-12]. 
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Figure 6. Visualization of the results in a 2D image with 2 tracks (cropped 
from real data). (a) Trajectories on x-y view frame (b) original trajectories 
on x-z view. (c) Corresponding trajectories (volume rendering) in x-z view. 

Figure 7. (a) 2D+T particle movement representation in a 3D spatio-
temporal volume. (b) 2D+T tracking detected result (volume rendering) 
using our technique. 

4. CONCLUSION 

We have demonstrated the applicability of multiple particle 
tracking based on GWDT dynamic programming for a 
minimal energy path within a single spatio-temporal volume. 
Our results demonstrate that the automated method produces 
sub-pixel accuracy for PSNR>7dB. We are validating this 
method now for other biological applications in order to 
enhance the performance over existing automated tracking 
software for subcellular dynamics. 
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