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ABSTRACT 

Automatic, high-throughput, quantification of the precise 
position and orientation of biological objects is essential for 
studying living, biomedically relevant processes from time-
lapse microscopy images. These measurements frequently 
include precise estimates for the center-of-mass as well as 
the location of the true object boundaries e.g. the membranes 
of cells.  This paper describes a region-oriented 
segmentation approach applied to the detection of both 
insects at the mm length scale as well as bacteria at the μm 
length scale. Despite the differences in length scale, images 
of both objects have similar aspect ratio, and it is common to 
have overlapping objects in images of both. This thus 
presents a challenge for any segmentation algorithm. Our 
approach performs all orientation detection through a chord 
length transform, so the task of separating overlapping 
objects in a two-dimensional image is reformulated as a 
voxel-labeling problem within a three-dimensional volume. 
It then utilizes the directional information from the Radon 
transformed image. Experimental results in simulation show 
that our method is effective in separating clustered elongated 
but stubby objects with aspect ratios not far from 1. The 
applications in detecting insects and Escherichia coli
bacteria demonstrate the value of our approach.  

Index Terms— high-throughput, in vivo microscopy, 
image analysis, chord length transform, Radon transform  

1. INTRODUCTION 

Quantifying individual features of large numbers of cells or 
animals simultaneously is a problem confronted in a number 
of disciplines. It is common for the number of objects 
requiring detection and segmentation to vary from hundreds 
to many thousands. Manual analysis is likely to show 
inconsistencies and be excessively time-consuming. Here we 
are especially interested in the location of each object and its 
orientation. The two particular biological problems this 
work helps address are as follows. 1) We want to track the 
dynamics of fluorescently labeled components inside single 
bacteria when we are simultaneously imaging large numbers  

Figure.1 Example images containing elongated biological objects. (1) 
Collembola insects of 0.2 to 0.25 mm length in a circular enclosure (a.1) 
and clusters in magnified view (a.2-a.4). (b.1) A bright-field image of E. 
coli bacteria of length 1 μm and clusters in magnified view (b.2-b.4). 

of cells. To establish a co-ordinate system for the motion of 
subcellular components relative to the cell we first need to 
have good tools for segmenting the cells (a typical image is 
Figure 1b.1). 2) We want to find the alignment and position 
of large numbers of insects crowded into a domain. This 
allows us to investigate how collective behavior of insects 
depends on their densities (a typical image is Figure 1a.1).  
Note that the images have elongated organisms that 
frequently overlap. 

High noise, contrast fluctuations and the presence of 
overlapping structures have serious detrimental effects on 
overlapping object segmentation techniques. Pixel-oriented 
segmentation techniques [1] include threshold techniques, 
edge methods and “growing-region” approaches, which are 
often ineffective for segmentation with complicated image 
conditions because these methods depend only on intensity 
or gradient information and neglect geometrical 
characteristics. The watershed algorithm [2] and its variants 
[3] are enhanced pixel-oriented methods used in many 
applications. However, they are limited by noise and 
intensity fluctuations, which generally result in over-
segmentation and need appropriate modification in post-
processing to enhance the accuracy to an acceptable level. 
Level set methods [4, 5] combined with prior shape 
information can provide accurate results but can be 
computationally demanding for large-scale datasets, thus 
necessitating time-consuming and subjective manual user-
intervention. To recognize partially occluded objects, some 
researchers use varied features, e.g. matching geometrical 
features by ellipse fitting [6], using convex hull attributes 
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[7], or by classification driven segmentation [8], directional 
morphological filters [9], and extracting directional 
characteristics  by transforms [10, 11]. 

Here, we propose an improved region-oriented 
segmentation approach, which builds on the Chord Length 
Transform (CLT) proposed in Ref. [10] by combining it 
with the Radon transform [11]. This is particularly useful for 
the stubby elongated objects we consider (which have 
maximum aspect ratios near 1:3).

2. ALGORITHMS APPLICATION 

We prepare our image by first using a complex filter derived 
from Ref. [12] to suppress background noise. This provides 
a more uniform object which is then mapped into multiscale 
space after Ref. [13] to distinguish the details of boundaries. 
The objects are then classified into two sets by a simple 
intensity segmentation using a local adaptive threshold 
method. We then have either clusters of overlapping objects 
or isolated objects depending on the foreground intensity. 
We can compute the attributes of isolated objects directly, so 
the bulk of the methods presented here are focused on 
obtaining the location and orientation of each individual 
object from overlapping clusters, which is normally a 
challenging question for segmentation approaches.  

2.1 Region-oriented chord length transforms 

We now briefly describe how a Chord Length Transform 
(CLT) can be used to map the 2D image into a 3D space to 
allow easy segmentation. The method we use is closely 
modeled on the CLT described in Ref. [10].  

The input to the CLT is a binary image, E, containing a 
cluster of objects obtained from the aforementioned 
preprocessing (e.g. Figure 2a). Each point inside the cluster 
(i, j) is assigned an orientation  and the CLT of E, C (i, j, 
), is an integer valued 3D image with elements which are 

the length of the chord of orientation  passing through (i, j). 
An example of the 3D image C can be found in Figure 2b.  
A full range of  is not considered; instead we consider a 
smaller, evenly spaced, sample of the full set of discrete 
orientations. In order to define chords and chord lengths in 
this discrete case the Bresenham line construction is used. 

2.2 Radon transforms and connected component 
labeling   

Having obtained an, integer-valued, 3D image, C, from the 
2D binary image of the cluster we next enhance this image 
by a morphological filter using Bresenham line as a 
directional kernel. The filtered image is then thresholded 
using its mean; this generates a binary image C’ with 
reduced background noise. Connected components of C’ are 
identified by the following procedure. If C’(i, j, ) is non-
zero, it is placed in the same component as the component of 
the 26 nearest neighbors of the point (i, j, ) in the three 

dimensional volume that are also non-zero. One can thus 
expect this procedure to generate multiple, distinct, 
connected components. Each distinct component is given a 
different label. We now project these labels onto, E, the 
original 2D thresholded image of the cluster. Each point E(i, 
j) in the 2D image can have multiple labels as it can 
participate in multiple components of the 3D binary image 
C’. We perform a small amount of size filtering and delete 
connected components which either have a very small 2D 
projection (<<organism size) or a large one (>2×organism 
size). We call the lower threshold lmin and the upper lmax. We 
are now in a position to use information derived from the 
Radon transform. 

                  

          
Figure 2. Segmentation and detection for overlapping clusters of stubby 
elongated biological objects. (a) Smooth filtered image to be transformed. 
(b) 3D volume which is the CLT of the image in a. (c) Component 
alignment estimation from the Radon transform (d) Detection result for 
center-of-mass and orientation in an overlapping cluster.

The Radon transform [11] of a binary object E(x) 
returns the distance, E’(r, ), travelled, through the object, 
by a particle following a straight-line trajectory which has a 
closest approach distance r to the origin and orientation . 
We take the binary image of the cluster, E and find its 
Radon transform E’(r, ) (an example is Figure 2c). The 
maxima of E’(r, ), of height greater than a threshold, tR, are 
found and the corresponding  values are identified. The 
hope is that these angles will be those that are aligned with 
the principal axes of the organisms contained within the 
clusters.  The final step is to find the alignment angles of 
each component of C’ when they are projected into the (i, j) 
plane. The extracted components are labeled and shown in 
Figure 2d with different colors overlaid on original blue 
objects, which have an alignment angle close to the principal 
angles identified by the Radon transform, and are then the 
candidate individual organisms. Given the centers of each 
organism a watershed algorithm is used to find the 
boundaries and then the best alignment of the organism can 
be found. 

3. EXPERIMENTS AND RESULTS
We first tested our approach on simulated data. We 
generated fixed-size rod-like objects with random position 
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and alignment and varied their densities. We picked an 
aspect ratio to mirror that of the bacteria and insects. 
Different parameter settings were tested, and the one with 
the best performance was then used for the segmentation of 
all the subsequent experimental images. In our specific 
applications, the following parameters were selected and 
provided satisfactory results:  was considered at intervals of 
5 degrees with lmax=32 pixels, lmin=8 pixels and Radon 
threshold tR =0.8. The results for extracting location and 
orientation for each elongated object corresponding to its 
segmentation are shown in Figure 3. It can be seen that our 
proposed algorithm approaches that actual number of rods in 
the simulated image. It is evident that our segmentation 
method combining the Radon transform outperforms the 
original CLT. The unmodified CLT algorithm has a 
tendency to oversegment and is better for more extreme 
aspect ratios; our method is particularly suited to elongated 
objects which are stubby rather than strip like. This is 
clarified in Figure 4.

In our application we find that the intervals between the 
 values in CLT are important. When the intervals are large, 

much orientation information will be skipped to produce 
under-segmentation. On the contrary, if the intervals are too 
small, too much detail will be obtained from the interior of 
the binary bodies we would like to identify as objects; this 
tends to oversegment the clusters. Here we find that 5° is a 
good compromise. 

We applied our method to movies of real experimental 
elongated biological objects using the optimized parameter 
settings based on our simulated data. Figure 5 illustrates 
insect image patches of two tightly connected objects from 
low density to high density, and E. coli microcopy in bright 
field is shown in Figure 6. The quantitative performance of 
our new method was compared to the method embedded in 
the open source software CellProfiler [3], which provides an 
enhanced watershed method combining distance information 
and intensity gradients from the objects. Typically, the 
boundaries of objects generated by CellProfiler were divided 
at the regions in the image with strong pixel intensity 
gradients, so that over-segmentation phenomena were 
serious. The direct results from the level set approach show 
that under-segmentation often occurs because it is difficult 
to divide a connected object without sufficient edge 
information. Overlapping especially makes the area of 
occluding part large and there are no obvious gradient 
changes to map the contour to the exact boundary. Our 
method is able to get significantly better detection for both 
location and orientation of elongated biological objects. It 
was evident that our method offered distinct advantage in 
adding directionality into the segmentation algorithm via the 
transformation into an oriented domain. By counting the 
number of segmented objects compared with manual results 
from several typical frames labeled with yellow color, 
Figure 7 also indicates that our proposed method can 
provide more accurate results. 

Figure 3. Accuracy comparison for actual value of rods, CLT with RT and 
CTL without RT 

Figure 4. Location and orientation detection (row a) based on its 
segmentation (row b) by CLT+RT for simulated data for low density (1st 
column), middle density (2nd column) and high density (3rd column). Row 
c is obtained by CLT without RT to the same image as a row.

4. CONCLUSION 

We described a scheme for segmenting elongated biological 
objects and extracted the corresponding information e.g. 
center-of-mass and orientation. The proposed method starts 
by using a Chord Length Transform to convert the 2D image 
into a 3D volume. The Radon transform is then applied to 
help segment this volume. This result may prove applicable 
to many types of biological/biomedical microscopy image 
analysis, and we have used this algorithm in both 
quantifying the dynamics of components inside single 
bacteria and in tracking the dynamics of large populations of 
insects. 
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Figure 5. Insect segmentation results. 1st row is original E. coli patches; 2nd

row is obtained from the level set method; 3rd row is the result from 
CellProfiler and the 4th row comes from our novel detecting method. 

Figure 6.  E. coli segmentation results. 1st row is the original patches; 2nd

row is obtained from the level set method; 3rd row is the results from 
CellProfiler and the 4th row comes from our novel detecting method.  
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Figure 7. Comparing our method with CellProfiler for segmented insect 
numbers in frames. 

5. AKNOWLEDGEMENTS 
QX supported by an OCISB grant awarded to NSJ and MCL. MCL 
supported by a Royal Society University Research Fellowship and by 
Hertford College Oxford. Cell strained data kindly donated by X.D.Wang 
and D.Sherratt, Oxford University. Thanks for preliminary discussions 
with V.Grau, Oxford University. 

6. REFERENCES
[1] Pham, D. L., Xu, C.Y. and Prince, J.L.: Current Methods in Medical 
Image Segmentation. Annual Review of Biomedical Engineering, vol. 2, 
pp.315-337 (2000) 
[2] Roerdink, J.M. and Meijster, A.: The Watershed Transform: 
Definitions, Algorithms and Parallelization Strategies. Fundamenta 
Informaticae, vol 41, pp.187-228 (2000) 
[3] Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I., 
Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., 
Golland, P. and Sabatini, D.M.: CellProfiler: Image Analysis for High 
Throughput Microscopy. http://www.cellprofiler.org.
[4] Dzyubachyk, O., Niessen, W. & Meijering, E. Advanced Level-Set 
Based Multi-Cell Segmentation and Tracking in Time-Lapse Fluorescence 
Microscopy Images. IEEE International Symposium on Biomedical 
Imaging --ISBI 2008, 185-188. (2008) 
[5] EI-Baz, A.S. Faraq,A.A. Ei Munim, H.A. Yuksel, S.E. Level Set 
Segmentation Using Statistical Shape Priors. Computer vision and Pattern 
Recognition workshop, (CVPRW), pp.78-85. (2006). 
[6] Visen.N., Shashidhar.N., Paliwal.J., and Jayas.D.: Identification and 
Segmentation of Occluding Groups of Grain Kernels in a Grain Sample 
Image. Journal of Agricultural Engineering Research, vol. 79, pp. 159-166, 
(2001). 
[7] Kutalik.Z., Razaz.Moe., and Baranyi.J.: Occluding Convex Image 
Segmentation for E.coli Microscopy Images. XII. European Signal 
Processing Conference (EUSIPCO). Vienna, Austria. Pp.937-940. 
September, (2004). 
[8] Lerner.B., Guterman. H., and Dinstein.I.: A Classification-Driven 
Partially Occluded Object Segmentation (cpoos) Method with Application 
to Chromosome Analysis. IEEE Transactions on Signal Processing, vol.46, 
pp. 2841-2847, (1998) 
[9] Soille, P., Breen, E.J. and Jones, R.: Recursive Implementation of 
Erosions and Dilations along discrete lines at arbitrary angles. IEEE Trans. 
Pattern Anal.Mach.Intell. vol.18, pp 562-567, (1996). 
[10] Sandau, K. and Ohser, J.: The Chord Length transform and the 
Segmentation of Crossing Fibers. Journal of miscroscopy, vol.226. pp.43-
53. Dec. (2007) 
[11] Deans, S. R.: The Radon Transform and Some of Its Applications. 
New York: John Wiley & Sons. (1983). 
[12] Giboa, G., Sochen, N. and Zeevi, Y.Y.: Image Enhancement and 
Denoising by Complex Diffusion Processes. IEEE Trans on Pattern 
Analysis and Machine intelligence, vol.26, pp.1020-1036. August (2004). 
[13] Kriete, A., Papazoglou E., Edrissi, B., Pais, H., Pourrezaei, K. 
Automated Quantification of Quantum-Dot-Labelled Epidermal Growth 
Factor Receptor Internalization via Multiscale Image Segmentation. J 
Microscopy, vol. 2222, pp. 22-27. (2006). 

164


