

An extremely brief summary

Reflected Power: Metals

Plotted as a function of the angle of incidence

's' \rightarrow Electric field polarized out of the plane of incidence.

'p' \rightarrow Electric field polarized parallel to the plane of incidence.

Summary

- The boundary conditions remain unchanged.
 - Only their interpretation is different
 - The 'transmitted angle' cannot be an angle
 - It is a complex quantity
 - So the wave vector 'k' is complex as well.
- For frequencies well below the point where the metal is transparent we obtain a high reflectivity.
- Using complex impedances in the reflection amplitude formula works even in this case.