
Electric Potential Boundary 
Problems

Part I – Fields in the Presence of 
conductors.
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Poisson and Laplace Equations
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Focus on the Laplace 
equation in an attempt to 
remain ON-SYLLABUS
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Electrostatic Solutions in Space

Plastic slab

P

origin

Some charges

The Problem:
What is the Electric Field at point ‘P’ ?

Solid Metal Box
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Electrostatic Solutions in Space

� For the moment, we will ignore the 
plastics
� These are ‘dielectrics’ and we will be 

covering their properties next term.

� Only worry about charge distributions and 
metal conductors

� Even better, we will start with metal 
conductors only.
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Review of a Conductor’s 
Electrostatic Properties

� Assumed to have very high conductivity.
� Charges freely move inside a conductor.

� Means that all of the conductor must be at a 
single potential

� If a charge is placed on a conductor it will 
distribute itself around the surface of the 
conductor.

� Electric Fields will not be present inside 
such a conductor at all.
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Conductor’s properties

Start with an insulator with some charges embedded in it.
Of course, those charges cannot move in an applied field.

E
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Now allow charges to move

In the electric field, the charges will move to the edges of the conductor.
But this creates a counter-field inside since the charges cannot leave the 
surface of the conductor.

E – Field from internal chares
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End result

Final electric field is very 
different from where we started

It is no longer uniform.

But we know how the E-field
behaves in the ‘space between’
conductors and charges.

So how do we solve these 

Boundary Value Problems!
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Boundary Conditions: Conductor

� E-field always perpendicular to surface 
of conductor.

� E-field is zero inside the conductor.
� ∆Eperp = σs

� The change in E-field is equal to the charge 
on the conductor’s surface.
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Laplace Equation: 

� Some obvious 
questions
� What does it mean?
� How can we use it?

� Lets start easy.
� Cartesian 

coordinates

� One-dimension

02 =∇ V

0
2

2

2

2

2

2

=
∂
∂+

∂
∂+

∂
∂

z

V

y

V

x

V

0
2

2

=
∂
∂

x

V



B. Todd Huffman, Oxford University 11

1-Dim. Laplace equation

� In one dimension it is indeed trivial.

� But two items are worth thinking about.
� 1). V(x) is the average of V(x+a) and V(x-a)

for any ‘a’.

� 2). Laplaces equation tolerates no maxima 
or minima!
� Extreme values of V must be at the end points.
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Laplace Equation: 

� Let’s start to get 
serious now.
� Cartesian coordinates

� But not too serious

� Two dimensions
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Laplace Equation: 2-D

� So we see there is a similar rule
� The potential at a point is equal to the 

average of the values at all points 
equidistant from our point in question.

� This rule also applies in 3-D
� There are no Maxima or Minima away 

from the boundaries!
� Except for trivial solutions: zero or a constant.
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Uniqueness: Laplace equation

� The solution to Lapace’s equation in a 
given volume is uniquely determined if 
either:
� The Electric Potential, V, is specified on 

every boundary of that volume.

Or
� The total charge on each conductor 

bounding the volume is given.



B. Todd Huffman, Oxford University 15

Uniqueness: Laplace equation

� Another way to put this:
� It really doesn’t matter what technique 

you use. Any function that:
� Satisfies the Laplace equation, and
� Meets all the boundary conditions

� IS THE ONLY POSSIBLE SOLUTION!!
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Voltage Problem Example

� Find the Electric Potential everywhere within the 
following configuration:
� Two parallel metal semi-infinite plates held at V=0 

volts and separated by a distance ‘a’ in meters.
� A Third plate caps them off at the end and is held at 

V0 volts.
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Let the Buyer Beware!

� This technique would not have worked if 
we had grounded the cap and put a 
potential V0 on one of the plates.
� One cannot represent function that is 

unbounded at infinity as a sum of discrete 
frequency sines and cosines.
� You can with a continuous set of frequencies �

called a Fourier Integral (not Fourier series).

� Series solutions always have bounding 
limitations.
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Caveat Emptor

V0

Solving for the interior of the box will
work fine.

Solving for the outside of the box will not.


