Circuit Theory

Prof. Todd Huffman

What is circuit theory?

Analysing (electrical) circuits, applying basic rules (Ohm's law, Kirchoff's law) to networks of components, to calculate the current and voltage at any point

To do this:

- You need to know the basic rules.
 - Ohm's Law
 - Kirkoff's Current law (Conservation of Charge)
 - Kirkoff's Voltage law (Conservation of Energy)
- And you need to know the techniques
 - Mesh analysis
 - Node analysis
- And I need to show you some tricks
- And You need to practice, as with any skill.

Reading List

- Electronics: Circuits, Amplifiers and Gates, D V Bugg, Taylor and Francis Chapters 1-7
- Basic Electronics for Scientists and Engineers, D L Eggleston, CUP Chapters 1,2,6
- Electromagnetism Principles and Applications, Lorrain and Corson, Freeman Chapters 5,16,17,18
- Practical Course Electronics Manual http://www-teaching.physics.ox.ac.uk/practical_course/ElManToc.html Chapters 1-3 (Very Good one to read!)
- Elementary Linear Circuit Analysis, L S Bobrow, HRW Chapters 1-6
- The Art of Electronics, Horowitz and Hill, CUP

Other Circuit Symbols

Sources of Electrical Power

Inductor

Ground – Reference Potential V ≡ Zero volts (by definition)

Passive Sign Convention

Passive devices ONLY - Learn it; Live it; Love it!

R=Resistance Ω [ohms]

V = IR

Three deceptively Simple questions:

Which way does the current flow, left or right?

Voltage has a '+' side and a '-' side (you can see it on a battery) on which side should we put the '+'? On the left or the right?

Given V=IR, does it matter which sides for V or which direction for I?

Explain on white board – Trick

Kirchoff's Laws

I Kirchoff's current law:

Sum of all currents at a node is zero

 $I_1 + I_2 - I_3 - I_4 = 0$ $\sum I_n = 0$

(conservation of charge)

Prof. Huffman – before you get carried away, show them what a 'node' is

Passive Sign Convention:

If you follow it, you can arbitrarily choose whether "incoming" or "outgoing" currents are Positive at each node independently from all other nodes! II Kirchoff's voltage law: Around a closed loop the net change of potential is zero

Passive Sign Convention really helps!!! Notice "I" $-V_0 + IR_1 + IR_2 + IR_3 = 0$ $\sum V_n = 0$

Calculate the voltage across R₂

$$5V = I(1+3+4)k\Omega$$

$$I = \frac{34}{8000\Omega} = 62.5 \text{mA}$$

 $V_{R2} = 62.5 \text{mA} \times 3 \text{k} \Omega = 1.9 \text{W}$

Let us use these rules to find V_x .

This technique is called "mesh analysis".

Start by labelling currents and using KVL. Then apply KCL at nodes.

If you then use Passive Sign Convention, the direction you chose for the currents DOES NOT MATTER!

You might think, up to now, that Passive Sign convention is a bit silly.

OK...So which is the "right" direction for V_x now?

What if we had a circuit with 5 loops and an additional current source?

Let's solve the above circuit and find out what V_x is.

Node Analysis

- Instead of currents around loops – voltages at nodes
- 1. Choose one node as a "ground". The reference
- Now label all nodes with a voltage. This is positive wrt ground.

 Now at each node (that isn't ground) use KCL

There are Tricks you can use IF you use *passive sign convention* at each node!

Capacitors —

Unit – "Farad" C = $\varepsilon A/d$

Capacitors are also PASSIVE – They too have a kind of "ohm's law" that relates voltage and current.

Q = CV $I = \frac{dQ}{dt} \longrightarrow I = C\frac{dV}{dt}$

Capacitor types

	Range		Maximum voltage		ge	/
Ceramic	1pF-1µF	2	30kV	Metal film	Ceramic]
Mica	1pF–10nF		500V	(very sta	very stable)	
Plastic	100pF-10µF		1kV			
Electrolytic	0.1µF-0.1F		500V	Aluminium		
				Oxide	Electrolyte	
Parasitic	~pF			Polarised	d	13

RC circuits

¹ Initially
$$V_R = 0 V_C = 0$$

Switch in Position "1" for a long time.

Then instantly flips at time t = 0.

Capacitor has a derivative! How do we analyze this?

There are some tricks...

ALWAYS start by asking these three questions:

1.) What does the Circuit do up until the switch flips? (Switch has been at pos. 1 for a VERY long time. easy)

2). What does the circuit do a VERY long time AFTER the switch flips? (easy)

3). What can we say about the INSTANT after switch flips? (easy if you know trick)

The Trick!!

- Remember $\rightarrow I = C \frac{dV}{dt}$
- Suppose the voltage on a 1 farad Capacitor changes by 1 volt in 1 second.
 - What is the current?
 - What if the same change in V happens in 1 microsecond?
 - So...What if the same change in V happens instantly?
- Rule: It is impossible to change the voltage on a capacitor instantly!
 - Another way to say it: The voltage at $t = 0-\varepsilon$ is the same as at $t = 0+\varepsilon$.

$$0 = R \frac{dI}{dt} + \frac{I}{C}$$

$$\frac{-I}{RC} = \frac{dI}{dt}$$

$$\int \frac{-1}{RC} dt = \int \frac{1}{I} dI$$

$$\frac{-t}{RC} = \ln I + a$$

$$= \ln I + \ln b$$

$$= \ln(bI)$$

$$e^{\left(\frac{-t}{RC}\right)} = bI$$

$$I = \left(\frac{1}{b}\right)e^{\left(\frac{-t}{RC}\right)}$$

$$= I_0 e^{\left(\frac{-t}{RC}\right)}$$
17

Switch Closes at time t=0. What is the voltage V_X as a function of time?

Work it out with student's help.

Inductance

$$L=\mu_0A\frac{N^2}{\ell}$$

for solenoid Unit – "Henry"

Inductors are also PASSIVE – They too have a kind of "ohm's law" that relates voltage and current.

$$V = L \frac{dI}{dt}$$

How should the inductor's voltage be labelled in the above diagram?

Inductors

Wire wound coils - air core

- ferrite core

Wire loops Straight wire

This one is going to be fun, I promise!

- 1.) What does the Circuit do up until the switch flips? (Switch has been at pos. 2 for a VERY long time. easy)
- 2). What does the circuit do a VERY long time AFTER the switch flips? (easy)
- 3). What can we say about the INSTANT the switch flips? (easy if you know trick)

The Next Trick!!

- Remember $\rightarrow V = L \frac{dI}{dt}$
- Suppose the current on a 1 henry Capacitor changes by 1 amp in 1 second.
 - What is the voltage?
 - What if the same change in I happens in 1 microsecond?
 - So...What if the same change in I happens instantly?
- Rule: It is impossible to change the current on an inductor instantly!
 - Another way to say it: The current at $t = 0-\varepsilon$ is the same as at $t = 0+\varepsilon$.
 - Does all this seem familiar? It is the concept of "duality".

And at t= ∞ (Pos. "1") V_R=0 V_L=0 I=0

> What about at t=0+? USE A TRICK!

Initially
$$t=0^{-1}$$

 $V_R=V_0 V_L=0 I=V_0/R$

At t=0⁺ \rightarrow Current in L MUST be the same I=V₀/R So...

$$V_{R} = V_{0} V_{R20} = 20V_{0}$$

and $V_{L} = -21V_{0}$!!!

For times t > 0

$$0 = V_{R20} + V_{R} + V_{L}$$

$$0 = 20IR + IR + L\frac{dI}{dt}$$

$$0 = 21IR + L\frac{dI}{dt}$$

And at t= ∞ (Pos. "1") V_R=0 V_L=0 I=0 ²⁵

 $\frac{dI}{I} + \frac{21R}{I} = 0$ dt L $\int_{I(0)}^{I(t)} \frac{dI}{I} = -\int_{0}^{t} \frac{dt}{\tau} \qquad \tau = \frac{L}{21R}$ $\ln\left(\frac{I(t)}{I(0)}\right) = -\frac{t}{\tau}$ $I(t) = I(0) exp\left(-\frac{t}{\tau}\right)$ $I(t = 0) = 0 \longrightarrow I(0) = \frac{V_0}{P}$ $I(t>0) = \frac{V_0}{R} \exp\left(-\frac{t}{\tau}\right) \qquad I(t\le 0) = \frac{V_0}{R}$

$$I(t) = \frac{V_0}{R} \left(\exp\left(-\frac{t}{\tau}\right) \right)$$

t<0 switch closed $I_2=?$ t=0 switch opened t>0 $I_2(t)=?$

voltage across $R_1 = ?$

Write this problem down and DO attempt it at home

LC circuit

$$\begin{split} t &\geq 0\\ V_L + V_C &= 0\\ L \frac{dI}{dt} + \frac{Q}{C} &= 0\\ L \frac{d^2I}{dt^2} + \frac{1}{C}I &= 0 \end{split}$$

Return to white board

 $\frac{d^2 I}{dt^2} = -\frac{1}{LC} I$

Initial conditions? $I(0)=I_0$ $\frac{dI}{dt}(0) = ?$

$$\begin{split} t &\geq 0 \\ V_R + V_L + V_C = V_0 \\ IR + L \frac{dI}{dt} + \frac{Q}{C} = V_0 \\ \frac{d^2I}{dt^2} + \frac{R}{L} \frac{dI}{dt} + \frac{1}{LC}I = 0 \end{split}$$

 $\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0$

R=6Ω L=1H C=0.2F Initial conditions? I(0) $\frac{dI}{dt}(0)$

LCR circuit

$$\gamma^2 < \omega_0^2 \qquad \qquad I(t \ge 0) = \frac{V_0}{\sqrt{\frac{L}{C} - \left(\frac{R}{2}\right)^2}} e^{-\gamma t} \cdot sin(\omega_R t)$$

