

Units: farad [F]=[AsV⁻¹] more usually μ F, nF, pF

Capacitor types

	Range		Maximum voltage			
Ceramic	1pF-1µF	=	30kV	Metal film	Ceramic	
Mica	1pF–10nF		500V	(very stable)		
Plastic	100pF-10µF		1kV			
Electrolytic	0.1µF-0.1F		500V	Aluminium + Electrolyte Oxide layer		
			2			
Parasitic	~pF			Polarise	d	
		11				2

Capacitors – energy stored

$$W = \int_0^t P(t')dt' = \int_0^t I(t')V(t')dt' = \int_0^t C \frac{dV(t')}{dt'}V(t')dt'$$

$$= C \int_0^V V' dV' = \frac{1}{2}CV^2$$

$$W = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{Q^2}{2C}$$

Energy stored as electric field

RC circuits

¹ Initially
$$V_R = 0 V_C = 0$$

Switch in Position "1" for a long time.

Then instantly flips at time t = 0.

Capacitor has a derivative! How do we analyse this?

There are some tricks...

ALWAYS start by asking these three questions:

1.) What does the Circuit do up until the switch flips? (Switch has been at pos. 1 for a VERY long time. easy)

2). What does the circuit do a VERY long time AFTER the switch flips? (easy)

3). What can we say about the INSTANT after switch flips? (easy if you know trick)

The Trick!!

- Remember $\rightarrow I = C \frac{dV}{dt}$
- Suppose the voltage on a 1 farad Capacitor changes by 1 volt in 1 second.
 - What is the current?
 - What if the same change in V happens in 1 microsecond?
 - So...What if the same change in V happens instantly?
- Rule: It is impossible to change the voltage on a capacitor instantly!
 - Another way to say it: The voltage at $t = 0-\varepsilon$ is the same as at $t = 0+\varepsilon$.

$$\begin{split} 0 &= R \, \frac{dI}{dt} + \frac{I}{C} \\ & \frac{-I}{RC} = \frac{dI}{dt} \\ & \int \frac{-1}{RC} \, dt = \int \frac{1}{I} \, dI \\ & \frac{-t}{RC} = \ln I + a \\ & = \ln I + \ln b \\ & = \ln(bI) \\ e^{\left(\frac{-t}{RC}\right)} = bI \\ & I = \left(\frac{1}{b}\right) e^{\left(\frac{-t}{RC}\right)} \\ & = I_0 e^{\left(\frac{-t}{RC}\right)} \end{split}$$

Integrator

Capacitor as integrator

Differentiation

 V_i

$$V_{\text{diff}} = V_{\text{R}} = \text{RI} = \text{RC}\left(\frac{dV_{\text{i}}}{dt} - \frac{dV_{\text{R}}}{dt}\right)$$

Small RC $\rightarrow \frac{dV_{\text{i}}}{dt} \gg \frac{dV_{\text{R}}}{dt}$

 $V_{diff} \approx RC \frac{dV_i}{dt}$

Solenoid N turns

Electromagnetic induction

Self Inductance

Mutual Inductance

Inductors

Wire wound coils - air core

- ferrite core

Wire loops Straight wire

Series / parallel circuits

Inductors – energy stored

ť'

$$W = \int_0^t P(t')dt'$$

= $\int_0^t I(t')V(t')dt'$
= $\int_0^t I(t')L \frac{dI(t')}{dt}d$
= $L \int_0^I IdI'$
= $\frac{1}{2}LI^2$

Energy stored as magnetic field

The Next Trick!!

- Remember $\rightarrow V = L \frac{dI}{dt}$
- Suppose the current on a 1 henry Inductor changes by 1 amp in 1 second.
 - What is the voltage?
 - What if the same change in I happens in 1 microsecond?
 - So...What if the same change in I happens instantly?
- Rule: It is impossible to change the current on an inductor instantly!
 - Another way to say it: The current at $t = 0-\varepsilon$ is the same as at $t = 0+\varepsilon$.
 - Does all this seem familiar? It is the concept of "duality".

Initially
$$t=0^{-1}$$

 $V_R=V_0 V_L=0 I=V_0/R$

At $t=0^+ \rightarrow$ Current in L MUST be the same $I=V_0/R$ So...

 $V_{R} = V_{0} V_{R20} = 20V_{0}$ and $V_{L} = -21V_{0}$!!!

For times t > 0

$$0 = V_{R20} + V_{R} + V_{L}$$

$$0 = 20IR + IR + L\frac{dI}{dt}$$

$$0 = 21IR + L\frac{dI}{dt}$$

And at t= ∞ (Pos. "2") V_R=0 V_L=0 I=0

 $\frac{dI}{I} + \frac{21R}{I}I = 0$ dt L $\int_{I(0)}^{I(t)} \frac{dI}{I} = -\int_{0}^{t} \frac{dt}{\tau} \qquad \tau = \frac{L}{21R}$ $\ln\left(\frac{I(t)}{I(0)}\right) = -\frac{t}{\tau}$ $I(t) = I(0) exp\left(-\frac{t}{\tau}\right)$ $I(t = 0) = 0 \longrightarrow I(0) = \frac{V_0}{P}$ $I(t>0) = \frac{V_0}{R} \exp\left(-\frac{t}{\tau}\right) \qquad I(t\le 0) = \frac{V_0}{R}$

$$I(t) = \frac{V_0}{R} \left(\exp\left(-\frac{t}{\tau}\right) \right)$$

t<0 switch closed $I_2=?$ t=0 switch opened t>0 $I_2(t)=?$

voltage across R₁=? Let R₁ get very large: What happens to V_L?

Write this problem down and DO attempt it at home

Physics 3 June 2001

6.

Notes for Todd:

Try to do it; consult the backup slides if you run into trouble.

[11]

[8]

The circuit shown contains a commercial inductor which can be represented by a resistor R_0 in series with an inductance L. Identical resistors R_1 are connected in parallel and in series with the inductor as shown in the circuit diagram. At time t = 0the switch S is closed so that current flows from the battery.

(i) Show that the current, I, flowing through the inductor is given by the equation

$$\frac{V_0}{2} = \left(\frac{R_1}{2} + R_0\right)I + L\frac{dI}{dt}$$

where V_0 is the battery voltage.

- (ii) Obtain an expression for the current I as a function of time and sketch a graph of the result.
- (iii) Calculate the potential difference V_{AB} when

$$t = \left(\frac{2L}{2R_0 + R_1}\right) \,. \tag{6}$$

$$\begin{array}{ll} t \geq 0 \\ & \\ \text{KVL} & V_{\text{R}} + V_{\text{L}} + V_{\text{C}} = V_{0} \\ & \\ \text{Component Laws} & IR + L \frac{dI}{dt} + \frac{Q}{C} = V_{0} \\ & \\ \text{Get Rid of "Q"} & \frac{d^{2}I}{dt^{2}} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0 \end{array}$$

R, L, C circuits

- What if we have more than just one of each?
- What if we don't have switches but have some other input instead?
 - Power from the wall socket comes as a sinusoid, wouldn't it be good to solve such problems?
- Yes! There is a much better way!
 Stay Tuned!

The Spanish Inquisition (not unexpected)

BACKUP SLIDES

Nortan equivalent about output shorted > Ieque = . Voltage source obsted -> Requir = Rit Rikz $-\frac{V_{c}(R_{1}+R_{2})}{R_{1}R_{2}} = C \frac{dV_{c}}{dt}$ R

 $dt = \int_{V_0}^{V_0} dV_c dV_c$ $= \int \frac{C}{I_0 - V_c} d'$ Rx $= \frac{R_1 R_2}{R_1 + R_2}$ $t = -R_{x}Ch(I_{o} - \frac{V_{c}}{R_{x}}) + const.$ $= \ln \left(\frac{I_o - V_c}{P_c} \right) - \ln \frac{V_c}{P_c}$ $k e^{-t} k c = I_0 - \frac{v_c}{R_r}$ -RX - KP É-C-28 $V_c =$

K=IORX $V_c = 0$ t=0the $V_{c} = T_{s}$ 1-0 RxI $= V_0 \frac{R_x}{R_1} \left(1 - e^{-t_R c} \right)$

hevenin equivalent about RX

 $\frac{V_0}{2} = I\left(\frac{R_1}{2} + R_0\right) + L\frac{dI}{dt}$

$$\frac{V_0}{2} = I\left(\frac{R_1}{2} + R_0\right) + L\frac{dI}{dt}$$

(iii)
$$V_{AB}$$
 at $t = \frac{2L}{2R_0 + R_1}$?
 $V_{AB} = I R_0 + L \frac{dI}{dt}$
 $= \frac{V_0 R_0}{2R_0 + R_1} \left[1 - exp \left(-\frac{2R_0 + R_1}{2L} t \right) \right]$
 $+ \frac{V_0}{2} exp \left[-\frac{2R_0 + R_1}{2L} t \right]$

$$V_{AB}\left(t=\frac{2L}{2R_{0}+R_{1}}\right)=\frac{V_{0}R_{0}}{2R_{0}+R_{1}}\left(1-\frac{L}{2}\right)+\frac{V_{0}}{2e}$$

Energy stored per unit volume

Inductor

Capacitor

$$W = \frac{1}{2}LI^{2}$$
$$= \frac{\mu_{0}}{2}A\frac{N^{2}}{\ell}I_{0}^{2}$$
$$= \frac{1}{2}\mu_{0}A\ell H^{2} \qquad H = \frac{B}{\mu_{0}} = \frac{NI}{\ell}$$

$$W = \frac{1}{2} CV^{2}$$
$$= \frac{1}{2} \frac{\varepsilon_{0} A}{d} V^{2}$$
$$= \frac{\varepsilon_{0}}{2} E^{2} \cdot Vol$$

$$\begin{bmatrix} C = \frac{\varepsilon_0 A}{d} \end{bmatrix}$$
$$\begin{bmatrix} E = \frac{V}{d} \end{bmatrix}$$

 $= \frac{\mu_0}{2} H^2 \cdot VoI$