CP2 Circuit Theory

Prof. Todd Huffman todd.huffman@physics.ox.ac.uk http://www-pnp.physics.ox.ac.uk/~huffman/

Aims of this course:

Understand basic circuit components (resistors, capacitors, inductors, voltage and current sources, op-amps)

Analyse and design simple linear circuits

Circuit Theory: Synopsis

Basics: voltage, current, Ohm's law...

Kirchoff's laws: mesh currents, node voltages...

Thevenin and Norton's theorem: ideal voltage and current sources...

Capacitors: Stored energy, RC and RL transient circuits

AC theory: complex notation, phasor diagrams, RC, RL, LCR circuits, resonance, bridges...

Op amps: ideal operational amplifier circuits...

Op-amps are on the exam syllabus

Reading List

- Electronics: Circuits, Amplifiers and Gates, D V Bugg, Taylor and Francis Chapters 1-7
- Basic Electronics for Scientists and Engineers, D L Eggleston, CUP
 Chapters 1,2,6
- Electromagnetism Principles and Applications, Lorrain and Corson, Freeman Chapters 5,16,17,18
- Practical Course Electronics Manual http://www-teaching.physics.ox.ac.uk/practical_course/ElManToc.html Chapters 1-3
- Elementary Linear Circuit Analysis, L S Bobrow, HRW Chapters 1-6
- The Art of Electronics, Horowitz and Hill, CUP

Why study circuit theory?

- Foundations of electronics: analogue circuits, digital circuits, computing, communications...
- Scientific instruments: readout, measurement, data acquisition...
- Physics of electrical circuits, electromagnetism, transmission lines, particle accelerators, thunderstorms...
- Not just electrical systems, also thermal, pneumatic, hydraulic circuits, control theory

Mathematics required

• Differential equations
$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0$$

• Complex numbers $V(t)=V_0e^{j\omega t}$

$$V(t)=V_0e^{j\omega t}$$

$$I = \frac{V}{Z}$$
 $Z = R + jX$

Linear equations

$$V_0 - I_1 R_1 - (I_1 - I_2) R_3 = 0$$

 $(I_1 - I_2) R_3 - I_2 R_2 + 2 = 0$

Covered by Complex Nos & ODEs / Vectors & Matrices lectures (but with fewer dimensions)

Charge, voltage, current

Charge: determines strength of electromagnetic force

quantised: $e=1.62\times10^{-19}C$

[coulombs]

Potential difference: V=V_A-V_B

[volts]

Energy to move unit charge from A to B

in electric field

$$V = -\int_A^B \mathbf{E} \cdot \mathbf{ds}$$
 $\mathbf{E} = -\nabla V$

$$W = -\int_{A}^{B} QE \cdot ds$$

Current: rate of flow of charge $I = \frac{dQ}{dt} = \text{nAve}$ No. electrons/unit vol Drift velocity Cross-section area of conductor [amps]

Power: rate of change of work

$$P = \frac{dW}{dt} = \frac{d}{dt}(QV) = Q\frac{dV}{dt} + V\frac{dQ}{dt}$$
$$= IV$$

[watts]

Ohm's law

Voltage difference ∞ current

Resistor symbols:

$$V = IR$$

R=Resistance Ω [ohms]

$$R = \frac{\rho L}{A}$$

 ρ =Resistivity Ω m

Resistivities

Silver
$$1.6 \times 10^{-8} \Omega m$$

Copper
$$1.7 \times 10^{-8} \Omega m$$

Manganin
$$42 \times 10^{-8} \Omega m$$

Distilled water
$$5.0 \times 10^3 \,\Omega m$$

PTFE (Teflon)
$$\sim 10^{19} \,\Omega \text{m}$$

Conductance
$$g = \frac{1}{R}$$
 conductivity $\sigma = \frac{1}{R}$ [seimens/m]

Power dissipation by resistor:
$$P = IV = I^2R = \frac{V^2}{R}$$

Voltage source

battery cell

Constant current source

Ideal current source: supplies I₀ amps independent of voltage

Real current source:

$$I_{load} = I_0 - \frac{V}{R_{int}}$$

AC and DC

DC (Direct Current):

Constant voltage or current

Time independent

$$V=V_0$$

AC (Alternating Current):

Time dependent

Periodic

$$V_0 = \frac{1}{V_0} = \frac{2\pi}{T}$$

$$V_0 = \frac{2\pi}{T}$$
time

50Hz power, audio, radio...

RMS values

AC Power dissipation

$$\overline{P} = I_{RMS} V_{RMS} = \frac{V_{RMS}^2}{R}$$

$$V_{\text{RMS}} = \frac{V_0}{\sqrt{2}}$$

Why $\sqrt{2}$? Square root of mean of V(t)²

$$V_{RMS} = \sqrt{\frac{1}{T} \int_0^T V^2(t) dt}$$

Passive Sign Convention

Passive devices ONLY - Learn it; Live it; Love it!

R=Resistance Ω [ohms]

$$V = IR$$

Two seemingly Simple questions:

Which way does the current flow, left or right?

Voltage has a '+' side and a '-' side (you can see it on a battery) on which side should we put the '+'? On the left or the right?

Given V=IR, does it matter which sides for V or which direction for I?

Kirchoff's Laws

I Kirchoff's current law:

Sum of all currents at a node is zero

$$I_1+I_2-I_3-I_4=0$$

$$\sum I_n = 0$$

(conservation of charge)

Here is a cute trick:

It does not matter whether you pick "entering" or "leaving" currents as positive.

BUT keep the same convention for all currents on one node!

II Kirchoff's voltage law:

Around a closed loop the net change of potential is zero (Conservation of Energy)

Kirchoff's voltage law:

$$\sum V_n\,=\,0$$

$$-V_0 + IR_1 + IR_2 + IR_3 = 0$$

Series / parallel circuits

$$R_1$$
 R_2 R_3

$$R_T = \sum_n R_n$$

Resistors in series: $R_{Total} = R_1 + R_2 + R_3...$

Resistors in parallel

$$\frac{1}{R_{T}} = \sum_{n} \frac{1}{R_{n}}$$

$$= \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \dots$$

Two parallel resistors:

$$R_{T} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

Potential divider

USE PASSIVE SIGN CONVENTION!!!

Show on blackboard

Mesh currents

First job: Label loop currents in all interior loops

Second job: USE PASSIVE SIGN CONVENTION!!!

Third job: Apply KCL to nodes sharing loop currents

Define: Currents Entering Node are positive

$$I_1 - I_2 - I_3 = 0 \rightarrow I_3 = I_1 - I_2$$

Mesh currents

Fourth job: Apply Kirchoff's Voltage law around each loop.

Last job: USE Ohm's law and solve equations.

Mesh currents

$$-9V+I_1R_1+I_3R_3=0$$
 $I_3=I_1-I_2$

$$-I_3R_3+I_2R_2+2V=0$$

$$9V/k\Omega = 9I_1-6I_2$$

$$-2V/k\Omega = -6I_1 + 8I_2$$

$$\rightarrow$$
 I₂=1 mA

Solve simultaneous equations

 $R_1 = 3k\Omega$

$$I_1 = \frac{5}{3} mA$$
 $I_3 = \frac{2}{3} mA$
 $V_3 = R_3 I_3 = 4 V$

Node voltages

Step 1: Choose a ground node!

Step 2: Label V's and I's on all nodes

Step 3: Apply KVL to find ∆V across resistors

Step 4: Apply KCL and ohms law using the tricks

Node voltages

$$0 = I_2 + I_3 + I_1$$

$$0 = \frac{V_X - (-2V)}{R_2} + \frac{V_X}{R_3} + \frac{V_X - 9V}{R_1}$$

All currents leave all labeled nodes And apply $\triangle V/R$ to each current. Only one equation, Mesh analysis would give two.

USE PASSIVE SIGN CONVENT

$$0 = I_2 + I_3 + I_1$$

$$0 = \frac{V_X - (-2V)}{R_2} + \frac{V_X}{R_3} + \frac{V_X - 9V}{R_1}$$

$$V_X \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_1} \right) = \frac{9V}{R_1} - \frac{2V}{R_2} = 3\text{mA} - 1\text{mA} = 2\text{mA}$$

$$V_{X}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{3}\right)\frac{1}{k\Omega}=2mA$$

$$\frac{V_X}{1k\Omega} = 2mA \quad \rightarrow \quad V_X = 2V$$

$$I_1 = \frac{2V - 9V}{3k\Omega} = -\frac{7}{3} \text{ mA}$$
 $I_2 = \frac{2V + 2V}{2k\Omega} = 2\text{ mA}$
 $I_3 = \frac{2V}{6k\Omega} = \frac{1}{3} \text{ mA}$

Thevenin's theorem

Any **linear** network of voltage/current sources and resistors

In Practice, to find V_{ea}, R_{ea}...

$$R_L \rightarrow \infty$$
 (open circuit) $I_L \rightarrow 0$ $V_{eq} = V_{OS}$ $R_L \rightarrow 0$ (short circuit) $V_L \rightarrow 0$ $R_{eq} = \frac{V_{OS}}{I_{cc}}$

R_{eq} = resistance between terminals when all voltages sources shorted – Warning! This is not always obvious!

$$V_{os} = V_{0} \frac{R_{2}}{R_{1} + R_{2}} \qquad I_{ss} = \frac{V_{0}}{R_{1}}$$

$$V_{l} \qquad R_{eq} = \frac{V_{0} \frac{R_{2}}{R_{1} + R_{2}}}{\frac{V_{0}}{R_{1}}} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

Norton's theorem

Any linear network of voltage/current sources and resistors

Equivalent circuit

$$V_L = V_0 - I_L R_1$$

$$\therefore I_{eq} = \frac{V_0}{R_{eq}}$$

$$R_{eq} = R_1$$

$$\begin{split} I_{eq} &= I_{R} + I_{L} = \frac{V_{L}}{R_{eq}} + I_{L} \\ R_{eq} I_{eq} - R_{eq} I_{L} &= V_{L} \end{split}$$

Same procedure: Find I_{SS} and V_{OC}

$$I_{EQ} = I_{SS}$$
 and $R_{EQ} = V_{OC}/I_{SS}$

Superposition

Important: label Everything the same directions!

$$I_1 = I_A + I_E$$

$$I_2 = I_B + I_F$$

$$I_3 = I_C + I_G$$

Example: Superposition

$$R_1=3kΩ$$
 $R_2=2kΩ$
 $R_3=6kΩ$

$$R_1 + \frac{R_2 R_3}{R_2 + R_3}$$
$$= 4.5k\Omega$$

$$I_{A} = \frac{9V}{4.5k\Omega} = 2mA$$

$$I_{C}R_{3} = I_{B}R_{2} = 9V \frac{1.5}{4.5} = 3V$$

 $I_{C} = 0.5mA$ $I_{B} = 1.5mA$

$$R_1=3k\Omega$$

 $R_2=2k\Omega$
 $R_3=6k\Omega$

$$-I_{G}R_{3} = I_{E}R_{1} = 2V\frac{2}{4} = 1V$$

$$I_G = -\frac{1}{6} mA$$

$$I_E = \frac{1}{3} mA$$

$$I_1 = I_A + I_E$$

$$I_1 = \left(2 + \frac{1}{3}\right) mA$$

$$= \frac{7}{3} mA$$

$$I_2 = (1.5 + 0.5) \text{mA}$$
 $I_3 = (0.5 - \frac{1}{6}) \text{mA}$
= 2mA

 $I_2 = I_B + I_F$

$$I_3 = I_C + I_G$$

$$I_3 = \left(0.5 - \frac{1}{6}\right) \text{mA}$$

$$= \frac{1}{3} \text{mA}$$

Matching: maximum power transfer

Find R_L to give maximum power in load

$$P = \frac{V_{L}^{2}}{R_{L}} = V_{0}^{2} \frac{R_{L}^{2}}{(R_{in} + R_{L})^{2}} \frac{1}{R_{L}}$$

$$\frac{dP}{dR_{L}} = V_{0}^{2} \frac{(R_{in} + R_{L})^{2} - 2R_{L}(R_{in} + R_{L})}{(R_{in} + R_{L})^{4}} = 0$$

$$R_{in} + R_{L} - 2R_{L} = 0$$

 $\therefore R_{in} = R_{L}$

Maximum power transfer when $R_L = R_{in}$

Note – power dissipated half in R_L and half in R_{in}

Circuits have Consequences

- Problem:
 - My old speakers are 60W speakers.
 - Special 2-4-1 deal at El-Cheap-0 Acoustics on 120W speakers!!
 - ("Offer not seen on TV!")
 - Do I buy them?
- Depends! 4Ω , 8Ω , or 16Ω speakers?
- Why does this matter?

And Now for Something Completely Different