Vectors and Matrices Problems
 Prof Neville Harnew, MT2012

Problem Set 2: Vectors Part II

1. Find the cartesian equation for the plane passing through $P_{1}=(2,-1,1), P_{2}=(3,2,-1), P_{3}=(-1,3,2)$.
2. The position vectors $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=-\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$, and $\mathbf{c}=2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ all lie in a plane. Find the vector equation of the plane.
3. Identify the following surfaces:
(a) $|\mathbf{r}|=k$
(b) $\mathbf{r} \cdot \mathbf{u}=l$
(c) $\mathbf{r} \cdot \mathbf{u}=m|\mathbf{r}|$ for $-1 \leq m \leq+1$

Here k, l, m are fixed scalars and \mathbf{u} is a fixed unit vector.
4. Find the equation of the line passing through $A=(1,2,3)$ perpendicular to the plane $x-2 y+z=1$.
5. Calculate the shortest distance between the planes: (1) $x+2 y+3 z=1$ and (2) $x+2 y+3 z=5$.
6. A line intersects a plane at an angle $\alpha=2 \pi / 3$. The line is defined by $\mathbf{r}=\mu \hat{\mathbf{n}}$ and the plane by $\mathbf{r} \cdot \hat{\mathbf{m}}=0$, with $\hat{\mathbf{n}}$ and $\hat{\mathbf{m}}$ unit vectors. Calculate the shortest distance from the plane to the point on the line with $\mu=2$.
7. The plane P_{1} contains the points A, B and C , which have position vectors $\mathbf{a}=-3 \mathbf{i}+2 \mathbf{j}, \mathbf{b}=7 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{c}=2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$, respectively. Plane P_{2} passes through A and is orthogonal to the line BC , whilst plane P_{3} passes through B and is orthogonal to the line AC. Find the coordinates of \mathbf{r}, the point of intersection of the three planes.
8. Using vector methods show that the line of intersection of the planes $x+2 y+3 z=0$ and $3 x+2 y+z=0$ is equally inclined to the $x-$ and z-axes and makes an angle $\cos ^{-1}(-2 / \sqrt{6})$ with the y-axis.
9. A line goes from the origin to $P=(1,1,1)$; a plane goes through points $A=$ $(-1,1,-2), B=(1,5,-5), C=(0,2,-3)$. Find the intersection point of the plane and the line.
10. Prove that the three vectors $\mathbf{a}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}, \mathbf{b}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}, \mathbf{c}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ are coplanar.
11. For $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}-\mathbf{j}$, find a vector which is coplanar with \mathbf{a} and \mathbf{b}, but perpendicular to a.
12. The vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are not coplanar. The vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$ and \mathbf{c}^{\prime} are the associated reciprocal vectors. Verify that the expressions

$$
\mathbf{a}^{\prime}=\frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}, \quad \mathbf{b}^{\prime}=\frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}, \quad \mathbf{c}^{\prime}=\frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}
$$

define a set of reciprocal vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$ and \mathbf{c}^{\prime} with the following properties:
(a) $\mathbf{a}^{\prime} \cdot \mathbf{a}=\mathbf{b}^{\prime} \cdot \mathbf{b}=\mathbf{c}^{\prime} \cdot \mathbf{c}=1$
(b) $\mathbf{a}^{\prime} \cdot \mathbf{b}=\mathbf{a}^{\prime} \cdot \mathbf{c}=\mathbf{b}^{\prime} \cdot \mathbf{a}=\mathbf{b}^{\prime} \cdot \mathbf{c}=\mathbf{c}^{\prime} \cdot \mathbf{a}=\mathbf{c}^{\prime} \cdot \mathbf{b}=0$
(c) $\mathbf{a}^{\prime} \cdot\left(\mathbf{b}^{\prime} \times \mathbf{c}^{\prime}\right)=1 /[\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})]$
(d) $\mathbf{a}=\left(\mathbf{b}^{\prime} \times \mathbf{c}^{\prime}\right) /\left[\mathbf{a}^{\prime} \cdot\left(\mathbf{b}^{\prime} \times \mathbf{c}^{\prime}\right)\right]$.
13. Given a set of (non-orthogonal) base vectors $\mathbf{a}=\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{k}$ and $\mathbf{c}=\mathbf{i}+\mathbf{j}$:
(a) Establish their reciprocal vectors and hence express the vectors $\mathbf{p}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$, $\mathbf{q}=\mathbf{i}+4 \mathbf{j}$ and $\mathbf{r}=-2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ in terms of the base vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.
(b) Verify that the scalar product $\mathbf{p} \cdot \mathbf{q}$ has the same value, -5 , when evaluated using either set of components.
14. Which of the following set of vectors are i) linearly independent and ii) orthogonal (or both) and explain why:
a) $\left|a_{1}\right\rangle=(0,1,0),\left|a_{2}\right\rangle=(1,0,0)$ and $\left|a_{3}\right\rangle=(0,0,1)$
b) $\left|a_{1}\right\rangle=(0,1,1),\left|a_{2}\right\rangle=(1,1,1)$ and $\left|a_{3}\right\rangle=(0,0,1)$
c) $\left|a_{1}\right\rangle=(1,1,1),\left|a_{2}\right\rangle=(1,-1,1)$ and $\left|a_{3}\right\rangle=(1,1,-2)$
d) $\left|a_{1}\right\rangle=(1,0,1),\left|a_{2}\right\rangle=(2,3,1)$ and $\left|a_{3}\right\rangle=(1,6,-1)$.

