Vectors and Matrices Problems
 Prof Neville Harnew, MT2012

Problem Set 1: Vectors Part I

1. Find the angle between the position vectors to the points $(3,-4,0)$ and $(-2,1,0)$ and find the direction cosines of a vector perpendicular to both.
2. Prove the following by considering vector components:
(a) $\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=-(\mathbf{b} \times \mathbf{a}) \cdot \mathbf{c}$,
(b) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$,
(c) $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \quad$ (Lagrange's identity).
3. Prove the following using vector algebra methods:
(a) if $\mathbf{a} \times \mathbf{b}=\mathbf{a}-\mathbf{b}$, this implies that $\mathbf{a}=\mathbf{b}$,
(b) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$,
(c) if $\mathbf{c}=\lambda \mathbf{a}+\mu \mathbf{b}$, this implies that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0$,
(d) if $\mathbf{a} \times \mathbf{c}=\mathbf{b} \times \mathbf{c}$, this implies that $\mathbf{c} \cdot \mathbf{a}-\mathbf{c} \cdot \mathbf{b}= \pm|\mathbf{c}| \cdot|\mathbf{a}-\mathbf{b}|$,
(e) $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{b})=\mathbf{b}[\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})]$.
4. Prove using vector algebra methods:
i) The diagonals of a parallelogram bisect each other.
ii) The diagonals of a rhombus are perpendicular to each other.
iii) Two lines, drawn from the end-points of the line of diameter of a circle to a common end-point on the circumference, intersect at a right angle.
5. The vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form the sides of a triangle.
i) Show that $|\mathbf{a} \times \mathbf{b}|=|\mathbf{b} \times \mathbf{c}|=|\mathbf{c} \times \mathbf{a}|$.
ii) Find the area of the triangle having vertices at $\mathrm{P}=(1,3,2), Q=(2,-1,1), \mathrm{R}=(-1,2,3)$.
6. Show that the points $(1,0,1),(1,1,0)$ and $(1,-3,4)$ lie on a straight line. Give the equation of the line in the form $\quad \mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$.
7. What is the shortest distance of $\mathbf{p}=(2,3,4)$ from the x-axis?
8. Write down the vector equation of the line

$$
\frac{(x-2)}{4}=\frac{(y-1)}{3}=\frac{(z-5)}{2}
$$

and find the minimum distance of this line from the origin.
9. Derive an expression for the shortest distance between the two lines $\mathbf{r}_{i}=\mathbf{q}_{i}+\lambda_{i} \mathbf{m}_{i}, \quad i=1,2$. Hence find the shortest distance between the lines

$$
\frac{(x-2)}{2}=(y-3)=\frac{(z+1)}{2}
$$

and

$$
(x+2)=\frac{(y+1)}{2}=(z-1)
$$

10. Find the values of the parameters λ and μ at the points of closest approach of the $\operatorname{lines} \mathbf{r}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+\mathbf{j})$ and $\mathbf{r}=\mathbf{j}+2 \mathbf{k}+\mu(-\mathbf{j}+\mathbf{k})$.
11. Two lines are defined by the equations

$$
\frac{(x-1)}{2}=(y+2)=\frac{(2-z)}{2}
$$

and

$$
\frac{(\alpha-x)}{4}=\frac{(y-3)}{\beta}=\frac{(z+4)}{4},
$$

where α and β are undetermined constants.
a) Why isn't an intersection of the lines possible if $\beta=-2$?
b) If $\beta=1$, what condition must α satisfy for the lines to intersect?
12. Two small objects travel with equal speed. The first starts from the point $(2,3,3)$ and travels in the direction $(-1,-1,0)$, while the second starts at the same time from $(3,2,1)$ and travels in the direction $(-1,0,1)$. Determine whether or not they collide.

