CP3 REVISION LECTURES

 VECTORS AND MATRICES

 VECTORS AND MATRICES}

Lecture 2
Prof. N. Harnew
University of Oxford

$$
\text { TT } 2013
$$

OUTLINE

5. Solutions to simultaneous linear equations
6. Rotation and matrix operators
7. Eigenvalues and Eigenvectors
8. Diagonalization of a matrix

5. Solutions to simultaneous linear equations

- We can write the set of simultaneous linear equations as a matrix equation:
$A x=b, \quad(A$ is called the coefficient matrix $)$. i.e.

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right)
$$

where $a_{i j}$ and b_{i} have known values, x_{i} are unknown.

- We can define the augmented matrix

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{2}\\
a_{21} & a_{22} & \cdots & a_{1 n} & b_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

- If the b_{i} are all zero, then the system of equations is called homogeneous, otherwise its inhomogeneous.

Unique solutions to simultaneous equations

- Consider $N=3$

$$
\begin{align*}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \tag{3}\\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{align*}
$$

- Condition for the solution to be unique:
- [Rank of coefficient matrix] = [Rank of augmented matrix] = = [Number of unknowns]
- OR alternatively $|A| \neq 0$ and $\underline{b} \neq 0$.
- Note that $|A| \neq 0$ and $\underline{\mathbf{b}}=\mathbf{0}$ gives the trivial solution $(x, y, z)=(0,0,0)$.

Unique solution: matrix inversion method

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{4}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{n}
\end{array}\right)
$$

- The equations are written $A x=b$, therefore we write $\mathrm{x}=A^{-1} b$ where $\left(A^{-1}\right)_{i j}=\left(C^{T}\right)_{i j} /|A|$ as before.
- Hence evaluate A^{-1} and the solutions drop out trivially
- Note the following:
- The method needs $|A|$ to be $\neq 0$ (i.e. non-singular),
- If all the $b_{i}=0$, only the trivial solution $x_{i}=0$ will be found.

Unique solution : Cramer's method

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1} z=v_{1} \\
& a_{2} x+b_{2} y+c_{2} z=v_{2} \quad \Rightarrow \quad \mathbf{A} \underline{\mathbf{x}}=\underline{\mathbf{v}} \tag{5}\\
& a_{3} x+b_{3} y+c_{3} z=v_{3}
\end{align*}
$$

Define Cramer's determinant $\rightarrow|A|$ with columns replaced by the RHS of equations:

$$
\begin{gather*}
\Delta_{x}=\left|\begin{array}{lll}
v_{1} & b_{1} & c_{1} \\
v_{2} & b_{2} & c_{2} \\
v_{3} & b_{3} & c_{3}
\end{array}\right|, \Delta_{y}=\left|\begin{array}{lll}
a_{1} & v_{1} & c_{1} \\
a_{2} & v_{2} & c_{2} \\
a_{3} & v_{3} & c_{3}
\end{array}\right|, \Delta_{z}=\left|\begin{array}{lll}
a_{1} & b_{1} & v_{1} \\
a_{2} & b_{2} & v_{2} \\
a_{3} & b_{3} & v_{3}
\end{array}\right| \tag{6}\\
\text { and }|A|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \tag{7}
\end{gather*}
$$

Solution is then:
$x=\Delta_{x} /|A|, \quad y=\Delta_{y} /|A|, \quad z=\Delta_{z} /|A|$.

Solutions do not exist

- Solutions do not exist if:
- $|A|=0$ and $\underline{\mathbf{b}} \neq 0$ and
[Rank of coefficient matrix] $<$ [Rank of augmented matrix]
- i.e. $|A|=0$ and any of Cramer's determinants are not equal to zero (*)
$\left(^{*}\right)$ since it is the Cramer's determinants (either $=0$ or $\neq 0$) which determine the rank of the augmented matrix.

Example: CP3 September 2007. No. 8

For which value of c does the set of linear equations

$$
\begin{aligned}
2 x+y-2 z & =1 \\
-2 x+3 y+z & =3 \\
c x+4 y-z & =d
\end{aligned}
$$

not have a unique solution? Give a geometrical interpretation of the set of equations for this value of c distinguishing the cases $d=4$ and $d \neq 4$.

- No unique solution if $\left|\begin{array}{ccc}2 & 1 & -2 \\ -2 & 3 & 1 \\ c & 4 & -1\end{array}\right|=0$
- Hence

$$
(2 \times-7)-1 \times(2-c)+(-2) \times(-8-3 c)=-14-2+c+16+6 c=0
$$

- No unique solution for $c=0$

CP3 September 2007. No. 8, continued

- $d=4,|A|=0$

$$
\begin{gathered}
2 x+y-2 z=1 \\
-2 x+3 y+z=3 \\
4 y-z=4
\end{gathered} \rightarrow\left(\begin{array}{ccc|c}
2 & 1 & -2 & 1 \\
-2 & 3 & 1 & 3 \\
0 & 4 & -1 & 4
\end{array}\right)
$$

- Rank of coefficient matrix = 2
- Get rank of augmented matrix

Cramer's determinants, $\Delta_{z}, \Delta_{x}:\left|\begin{array}{ccc}2 & 1 & 1 \\ -2 & 3 & 3 \\ 0 & 4 & 4\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & -2 \\ 3 & 3 & 1 \\ 4 & 4 & -1\end{array}\right|=0$
(since two columns are equal).
And Δ_{y} : $\left|\begin{array}{ccc}2 & 1 & -2 \\ -2 & 3 & 1 \\ 0 & 4 & -1\end{array}\right|=0 \quad$ (since it's identical to $|A|$)

- Hence rank of augmented matrix = 2

CP3 September 2007. No. 8, continued

- $d=4$: All three planes meet on a common line

- Since all Cramer's determinants are zero, AND no single equation is a multiple of the other.
- An infinite number of solutions.

CP3 September 2007. No. 8, continued

- $d \neq 4, \quad|A|=0$

$$
\begin{gathered}
2 x+y-2 z=1 \\
-2 x+3 y+z=3 \\
4 y-z=d
\end{gathered} \rightarrow\left(\begin{array}{ccc|c}
2 & 1 & -2 & 1 \\
-2 & 3 & 1 & 3 \\
0 & 4 & -1 & d
\end{array}\right)
$$

- Rank of coefficient matrix = 2
- Get rank of augmented matrix

Cramer's determinants: e.g $\Delta_{z}=\left|\begin{array}{ccc}2 & 1 & 1 \\ -2 & 3 & 3 \\ 0 & 4 & d\end{array}\right| \neq 0$

- Hence, [Rank of coefficient matrix] $<$ [Rank of augmented matrix]

CP3 September 2007. No. 8, continued

- Lines of intersection of the planes are parallel to each other.
- No solutions exist

Homogeneous equations

- $|A|=0$ and $\underline{\mathbf{b}}=0$

$$
\begin{align*}
& a_{11} x+a_{12} y+a_{13} z=0 \tag{8}\\
& a_{21} x+a_{22} y+a_{23} z=0 \\
& a_{31} x+a_{32} y+a_{33} z=0
\end{align*}
$$

- $\underline{\mathbf{b}}=0$ gives the trivial solution $(x, y, z)=(0,0,0)$ unless $|A|=0$
- Three planes meet on a common line passing through the origin, note that only the ratios $x / y, x / z, y / z$ can be found.
- Example

$$
\begin{gather*}
2 x+3 y+4 z=0 \tag{1}\\
x+2 y+2 z=0 \\
-x+y-2 z=0
\end{gather*}
$$

$|A|=0$ and $\underline{\mathbf{b}}=0$
Line through the origin is $\quad y=0, x=-2 z$

6. Rotation and matrix operators

- We can write a transformation in matrix form:

$$
x=S x^{\prime}
$$

where S is a transformation matrix.
This transforms the change of basis, and also transforms the vector components $x^{\prime} \rightarrow x$.

- The inverse transformation transforms x back to x^{\prime}, leaving it unchanged by the two successive transformations.

$$
x^{\prime}=S^{-1} x
$$

Example: CP3 September 2009. No. 10

First part:The axes of a coordinate system $\left(x^{\prime}, y^{\prime}\right)$ are rotated by an angle θ in the counter-clockwise direction with respect to the axes of a coordinate system (x, y), and the two systems share a common origin. Show that the coordinates x^{\prime} and y^{\prime} can be expressed in terms of x and y using the relation

$$
\binom{x^{\prime}}{y^{\prime}}=\mathbf{R}(\theta)\binom{x}{y}, \quad \text { where } \quad \mathbf{R}(\theta)=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

Show that $\mathbf{R}^{-1}=\mathbf{R}^{T}$, where \mathbf{R}^{T} is the transpose of \mathbf{R}.

$$
\begin{aligned}
& x^{\prime}=r \cos \alpha \\
& x=r \cos (\theta+\alpha) \\
& \rightarrow \quad x^{\prime}=\frac{x \cos \alpha}{\cos (\theta+\alpha)}
\end{aligned}
$$

$$
x \cos \alpha=x^{\prime} \cos \theta \cos \alpha-x^{\prime} \sin \theta \sin \alpha
$$

Since $x^{\prime} \sin \alpha=y^{\prime} \cos \alpha$

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta
$$

- Coordinate transformation:

$$
\binom{x}{y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{10}\\
\sin \theta & \cos \theta
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}
$$

- Take the inverse:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{11}\\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

These equations relate the coordinates of $\underline{\underline{r}}$ measured in the (x, y) frame with those measured in the rotated (x^{\prime}, y^{\prime}) frame

Rotation of a vector in fixed 3D coord. system

- In 3D, we can rotate a vector \underline{r} about any one of the three axes

$$
\underline{\mathbf{r}}^{\prime}=R(\theta) \underline{\mathbf{r}}
$$

A rotation about the z axis is given by

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \tag{12}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- For rotations about the x and y axes

$$
R_{x}(\alpha)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{13}\\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right), \quad R_{y}(\gamma)=\left(\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right)
$$

- But note that now for successive rotations:

$$
R_{z}(\theta) R_{X}(\alpha) \neq R_{X}(\alpha) R_{z}(\theta)
$$

Matrices and quadratic forms

Example: CP3 September 2009. No. 10
Second part:The equation of an ellipse whose major axis is inclined at an angle with the respect to the x-axis may be written as $f(x, y)=2 x^{2}+2 y^{2}-2 x y=9$. Find the elements of the symmetric matrix M that satisfies the relation $(x, y) \mathrm{M}\binom{x}{y}$.

- Write $X^{\top} A X$ in generalized form:
$(x, y)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=(x, y)\binom{a x+b y}{c x+d y}=a x^{2}+b x y+c x y+d y^{2}$
- Compare coefficients $\rightarrow a=2, d=2,(b+c)=-2$ Write in symmetrical form $b=c=-1$
- Hence in matrix representation:

$$
(x, y)\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\binom{x}{y}=9
$$

7. Eigenvalues and Eigenvectors

- An eigenvalue equation is one that transforms as

$$
\boldsymbol{A}|\mathbf{x}\rangle=\lambda|\mathbf{x}\rangle
$$

where λ is just a number (can be complex)

- A has transformed $|\mathbf{x}\rangle$ into a multiple of itself
- Vector $|\mathbf{x}\rangle$ is the eigenvector of the operator A λ is the eigenvalue.
- The operator A can have in principle a series of eigenvectors $\left|\mathbf{x}_{\mathbf{j}}\right\rangle$ and eigenvalues λ_{j}.
- Write in matrix form:

$$
A x=\lambda x \quad \text { where } A \text { is an } N \times N \text { matrix. }
$$

- In QM, often deal with normalized eigenvectors: $x^{\dagger} x=\langle\mathbf{x} \mid \mathbf{x}\rangle=1$ (where $x^{\dagger}=x^{* T} \rightarrow$ Hermitian conjugate)

Finding eigenvalues and eigenvectors

- Eigenvalue equation:

$$
A x=\lambda x=\lambda I x \quad(I \text { is the unit matrix })
$$

- $A x-\lambda \mid x=0$
- $(A-\lambda I) x=0$
- A set of linear simultaneous equations of degree N.
- Homogeneous equations only have a non-trivial solution (x_{i} non-zero) if the determinant

$$
|A-\lambda I|=0
$$

Example: CP3 June 2010. No. 4

Find the eigenvalues and normalized eigenvectors of the two-dimensional rotation matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ where θ is the (real) rotation angle. Show explicitly that the eigenvectors are orthogonal.

- First the eigenvalues: start from $|A-\lambda I|=0$

$$
\left.\begin{array}{cc}
\cos \theta-\lambda & -\sin \theta \\
\sin \theta & \cos \theta-\lambda
\end{array} \right\rvert\,=0
$$

- $(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=\lambda^{2}-2 \lambda \cos \theta+1=0$
- $\lambda=\cos \theta \pm \frac{1}{2} \sqrt{4 \cos ^{2} \theta-4}=\cos \theta \pm i \sin \theta$
- $\lambda=e^{ \pm i \theta}$

CP3 June 2010. No. 4, continued

- Now find the eigenvectors - substitute into the eigenvalue equation:

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}=(\cos \theta \pm i \sin \theta)\binom{x}{y}
$$

- $x \cos \theta-y \sin \theta=x(\cos \theta \pm i \sin \theta)$
$x \sin \theta+y \cos \theta=y(\cos \theta \pm i \sin \theta)$
- $-y \sin \theta= \pm i x \sin \theta$

$$
x \sin \theta= \pm i y \sin \theta
$$

- $x / y= \pm i$
- Set $x=1 \rightarrow$ Eigenvectors:

$$
\psi_{+}=\frac{1}{\sqrt{ } 2}\binom{1}{+i}, \quad \psi_{-}=\frac{1}{\sqrt{ } 2}\binom{1}{-i}
$$

(Eigenvectors should be multiplied by some arbitrary phase $e^{i \alpha}$)
(Normalization $\frac{1}{\sqrt{ } 2}$ comes from conditions $\psi_{+}^{\dagger} \psi_{+}=1, \psi_{-}^{\dagger} \psi_{-}=1$)

CP3 June 2010. No. 4, continued

- Orthgonality of Eigenvectors
- From before : $\psi_{+}=\frac{1}{\sqrt{ } 2}\binom{1}{+i}, \psi_{-}=\frac{1}{\sqrt{2}}\binom{1}{-i}$
- $\psi_{+}^{\dagger} \psi_{-}=\frac{1}{\sqrt{ } 2} \times \frac{1}{\sqrt{ }{ }^{2}}((1,-i))\binom{1}{-i}=0$

Eigenvalues and eigenvectors of an Hermitian matrix

- Hermitian conjugate of a matrix: $A^{\dagger}=\left(A^{T}\right)^{*}=\left(A^{*}\right)^{T}$ A complex matrix with $A=A^{\dagger}$ is Hermitian.
- The eigenvalues of Hermitian matrix are real
- The eigenvectors of Hermitian matrix are orthogonal
(See lecture notes for proofs)

8. Diagonalization of a matrix

To "diagonalize" a matrix:

- Take a given $N \times N$ matrix A
- Construct a $N \times N$ matrix S that has the eigenvectors of A as its columns
- Then the "similarity transformation" matrix $A^{\prime} \rightarrow\left(S^{-1} A S\right)$ is diagonal and has the eigenvalues of A as its diagonal elements.

Example: adapted from CP3 June 2010. No. 10

Let the columns of the matrix S be the normalized eigenvectors of the Hermitian matrix A. Show that $D=S^{-1} A S$ is a diagonal matrix. What are the diagonal elements of D ?

- x_{j}, λ_{j} are the eigenvectors/values of operator $A: \quad A x_{j}=\lambda_{j} x_{j}$
- Consider a similarity transformation from some basis $|\mathbf{e}\rangle \rightarrow\left|\mathbf{e}^{\prime}\right\rangle$ $A \rightarrow A^{\prime}=S^{-1} A S$, where the columns j of the matrix S are the special case of the eigenvectors of the matrix $A,\left(\begin{array}{ccc}\uparrow & \uparrow & \cdots \\ x_{1} & x_{2} & \cdots \\ \downarrow & \downarrow & \cdots\end{array}\right)$
- Consider the individual elements of $S^{-1} A S$ in this case

$$
\begin{aligned}
A_{i j}^{\prime} & =\left(S^{-1} A S\right)_{i j} \\
& =\sum_{k}\left(S^{-1}\right)_{i k}\left(\sum_{m} A_{k m} S_{m j}\right)=\sum_{k} \sum_{m}\left(S^{-1}\right)_{i k} A_{k m} S_{m j} \\
& =\sum_{k} \sum_{m}\left(S^{-1}\right)_{i k} A_{k m}\left(x_{j}\right)_{m}=\sum_{k}\left(S^{-1}\right)_{i k} \lambda_{j}\left(x_{j}\right)_{k} \\
& =\sum_{k} \lambda_{j}\left(S^{-1}\right)_{i k} S_{k j}=\lambda_{j} \delta_{i j} \quad \text { where } \delta_{i j} \text { is the Kronecker delta. }
\end{aligned}
$$

Hence $S^{-1} A S$ is a diagonal matrix with the eigenvalues of A along the diagonal.

