
CP3 REVISION LECTURES

VECTORS AND MATRICES

Lecture 2
Prof. N. Harnew

University of Oxford

TT 2013

1



OUTLINE

5. Solutions to simultaneous linear equations

6. Rotation and matrix operators

7. Eigenvalues and Eigenvectors

8. Diagonalization of a matrix

2



5. Solutions to simultaneous linear equations
I We can write the set of simultaneous linear equations as a

matrix equation:
Ax = b, (A is called the coefficient matrix ). i.e.

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn

 .


x1
x2
· · ·
xn

 =


b1
b2
· · ·
bm

 (1)

where aij and bi have known values, xi are unknown.

I We can define the augmented matrix
a11 a12 · · · a1n b1
a21 a22 · · · a1n b2
· · · · · · · · · · · · · · ·
am1 am2 · · · amn bm

 (2)

I If the bi are all zero, then the system of equations is called
homogeneous, otherwise its inhomogeneous.
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Unique solutions to simultaneous equations

I Consider N = 3

a11x + a12y + a13z = b1
a21x + a22y + a23z = b2
a31x + a32y + a33z = b3

(3)

I Condition for the solution to be unique:

I [Rank of coefficient matrix] = [Rank of augmented matrix] =
= [Number of unknowns]

I OR alternatively |A| 6= 0 and b 6= 0.

I Note that |A| 6= 0 and b = 0 gives the trivial solution
(x , y , z) = (0,0,0).
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Unique solution: matrix inversion method


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann




x1
x2
· · ·
xn

 =


b1
b2
· · ·
bn

 (4)

I The equations are written Ax = b, therefore we write
x = A−1b where (A−1)ij = (CT )ij/|A| as before.

I Hence evaluate A−1 and the solutions drop out trivially
I Note the following:

I The method needs |A| to be 6= 0 (i.e. non-singular),
I If all the bi = 0, only the trivial solution xi = 0 will be found.
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Unique solution : Cramer’s method

a1x + b1y + c1z = v1
a2x + b2y + c2z = v2
a3x + b3y + c3z = v3

⇒ Ax = v (5)

Define Cramer’s determinant→ |A| with columns replaced by the
RHS of equations:

∆x =

∣∣∣∣∣∣
v1 b1 c1
v2 b2 c2
v3 b3 c3

∣∣∣∣∣∣ , ∆y =

∣∣∣∣∣∣
a1 v1 c1
a2 v2 c2
a3 v3 c3

∣∣∣∣∣∣ , ∆z =

∣∣∣∣∣∣
a1 b1 v1
a2 b2 v2
a3 b3 v3

∣∣∣∣∣∣
(6)

and |A| =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ (7)

Solution is then:
x = ∆x/|A|, y = ∆y/|A|, z = ∆z/|A|.
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Solutions do not exist

I Solutions do not exist if:

I |A| = 0 and b 6= 0 and
[Rank of coefficient matrix] < [Rank of augmented matrix]

I i.e. |A| = 0 and any of Cramer’s determinants are not equal
to zero (*)

(*) since it is the Cramer’s determinants (either = 0 or 6= 0)
which determine the rank of the augmented matrix.
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Example: CP3 September 2007. No. 8

For which value of c does the set of linear equations

2x + y − 2z = 1
−2x + 3y + z = 3

cx + 4y − z = d

not have a unique solution? Give a geometrical interpretation of the
set of equations for this value of c distinguishing the cases d = 4 and
d 6= 4. [8]

I No unique solution if

∣∣∣∣∣∣
2 1 −2
−2 3 1
c 4 −1

∣∣∣∣∣∣ = 0

I Hence
(2×−7)−1×(2−c)+(−2)×(−8−3c) = −14−2+c+16+6c = 0

I No unique solution for c = 0
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CP3 September 2007. No. 8, continued

I d = 4, |A| = 0
2x + y − 2z = 1
−2x + 3y + z = 3

4y − z = 4
→

 2 1 −2 1
−2 3 1 3
0 4 −1 4



I Rank of coefficient matrix = 2
I Get rank of augmented matrix

Cramer’s determinants, ∆z ,∆x :

∣∣∣∣∣∣
2 1 1
−2 3 3
0 4 4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 −2
3 3 1
4 4 −1

∣∣∣∣∣∣ = 0

(since two columns are equal).

And ∆y :

∣∣∣∣∣∣
2 1 −2
−2 3 1
0 4 −1

∣∣∣∣∣∣ = 0 (since it’s identical to |A|)

I Hence rank of augmented matrix = 2
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CP3 September 2007. No. 8, continued

I d = 4 : All three planes meet on a common line

I Since all Cramer’s determinants are zero, AND no single
equation is a multiple of the other.

I An infinite number of solutions.
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CP3 September 2007. No. 8, continued

I d 6= 4, |A| = 0

2x + y − 2z = 1
−2x + 3y + z = 3

4y − z = d
→

 2 1 −2 1
−2 3 1 3
0 4 −1 d


I Rank of coefficient matrix = 2
I Get rank of augmented matrix

Cramer’s determinants: e.g ∆z =

∣∣∣∣∣∣
2 1 1
−2 3 3
0 4 d

∣∣∣∣∣∣ 6= 0

I Hence, [Rank of coefficient matrix] < [Rank of
augmented matrix]
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CP3 September 2007. No. 8, continued

I Lines of intersection of the planes are parallel to each
other.

I No solutions exist
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Homogeneous equations

I |A| = 0 and b = 0

a11x + a12y + a13z = 0
a21x + a22y + a23z = 0
a31x + a32y + a33z = 0

(8)

I b = 0 gives the trivial solution (x , y , z) = (0,0,0)
unless |A| = 0

I Three planes meet on a common line passing through the
origin, note that only the ratios x/y , x/z, y/z can be
found.

I Example
2x + 3y + 4z = 0 (1)
x + 2y + 2z = 0 (2)
−x + y − 2z = 0 (3)

(9)

|A| = 0 and b = 0
Line through the origin is y = 0, x = −2z
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6. Rotation and matrix operators

I We can write a transformation in matrix form:

x = Sx ′

where S is a transformation matrix .
This transforms the change of basis, and also transforms
the vector components x ′ → x .

I The inverse transformation transforms x back to x ′, leaving
it unchanged by the two successive transformations.

x ′ = S−1x
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Example: CP3 September 2009. No. 10

First part:The axes of a coordinate system (x ′, y ′) are rotated by an
angle θ in the counter-clockwise direction with respect to the axes of
a coordinate system (x , y), and the two systems share a common
origin. Show that the coordinates x ′ and y ′ can be expressed in
terms of x and y using the relation

(
x ′

y ′

)
= R(θ)

(
x
y

)
, where R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
.

Show that R−1 = RT , where RT is the transpose of R. [5]
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x ′ = r cosα
x = r cos(θ + α)
→ x ′ = x cosα

cos(θ+α)
x cosα = x ′ cos θ cosα− x ′ sin θ sinα

Since x ′ sinα = y ′ cosα

x = x ′ cos θ−y ′ sin θ

y ′ = r sinα
y = r sin(θ + α)

→ y ′ = y sinα
sin(θ+α)

y sinα = y ′ sin θ cosα+ y ′ cos θ sinα

Since y ′ cosα = x ′ sinα

y = x ′ sin θ+y ′ cos θ

I Coordinate transformation:(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x ′

y ′

)
(10)

I Take the inverse:(
x ′

y ′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
(11)





These equations
relate the coordinates
of r measured in the
(x , y) frame with those
measured in the rotated
(x ′, y ′) frame
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Rotation of a vector in fixed 3D coord. system

I In 3D, we can rotate a vector r about any one of the three axes

r′ = R(θ) r

A rotation about the z axis is given by

Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (12)

I For rotations about the x and y axes

Rx (α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , Ry (γ) =

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ


(13)

I But note that now for successive rotations:

Rz(θ)Rx (α) 6= Rx (α)Rz(θ)
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Matrices and quadratic forms
Example: CP3 September 2009. No. 10
Second part:The equation of an ellipse whose major axis is inclined
at an angle with the respect to the x-axis may be written as
f (x , y) = 2x2 + 2y2 − 2xy = 9 . Find the elements of the symmetric

matrix M that satisfies the relation (x , y) M

(
x
y

)
. [3]

I Write X T AX in generalized form:

(x , y)

(
a b
c d

)(
x
y

)
= (x , y)

(
ax + by
cx + dy

)
= ax2+bxy +cxy +dy2

I Compare coefficients→ a = 2,d = 2, (b + c) = −2
Write in symmetrical form b = c = −1

I Hence in matrix representation:

(x , y)

(
2 −1
−1 2

)(
x
y

)
= 9
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7. Eigenvalues and Eigenvectors

I An eigenvalue equation is one that transforms as

A|x〉 = λ|x〉

where λ is just a number (can be complex)

I A has transformed |x〉 into a multiple of itself
I Vector |x〉 is the eigenvector of the operator A
λ is the eigenvalue.

I The operator A can have in principle a series of
eigenvectors |xj〉 and eigenvalues λj .

I Write in matrix form:

Ax = λx where A is an N × N matrix.

I In QM, often deal with normalized eigenvectors:
x†x = 〈x|x〉 = 1 (where x† = x∗T → Hermitian conjugate)
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Finding eigenvalues and eigenvectors

I Eigenvalue equation:

Ax = λx = λIx (I is the unit matrix)

I Ax − λIx = 0

I (A− λI)x = 0

I A set of linear simultaneous equations of degree N.

I Homogeneous equations only have a non-trivial solution
(xi non-zero) if the determinant

|A− λI| = 0
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Example: CP3 June 2010. No. 4

Find the eigenvalues and normalized eigenvectors of the

two-dimensional rotation matrix
(

cos θ − sin θ
sin θ cos θ

)
where θ is the

(real) rotation angle. Show explicitly that the eigenvectors are
orthogonal. [8]

I First the eigenvalues: start from |A− λI| = 0∣∣∣∣ cos θ − λ − sin θ
sin θ cos θ − λ

∣∣∣∣ = 0

I (cos θ − λ)2 + sin2 θ = λ2 − 2λ cos θ + 1 = 0

I λ = cos θ ± 1
2

√
4 cos2 θ − 4 = cos θ ± i sin θ

I λ = e±iθ
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CP3 June 2010. No. 4, continued

I Now find the eigenvectors - substitute into the eigenvalue
equation:(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
= (cos θ ± i sin θ)

(
x
y

)
I x cos θ − y sin θ = x(cos θ ± i sin θ)

x sin θ + y cos θ = y(cos θ ± i sin θ)

I −y sin θ = ±ix sin θ
x sin θ = ±iy sin θ

I x/y = ±i

I Set x = 1 → Eigenvectors :

ψ+ = 1√
2

(
1

+i

)
, ψ− = 1√

2

(
1
−i

)
(Eigenvectors should be multiplied by some arbitrary phase eiα)
(Normalization 1√

2 comes from conditions ψ†+ψ+ = 1, ψ†−ψ− = 1)
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CP3 June 2010. No. 4, continued

I Orthgonality of Eigenvectors

I From before : ψ+ = 1√
2

(
1

+i

)
, ψ− = 1√

2

(
1
−i

)
I ψ†+ψ− = 1√

2 ×
1√
2

(
(1,−i)

)( 1
−i

)
= 0
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Eigenvalues and eigenvectors of an Hermitian matrix

I Hermitian conjugate of a matrix: A† = (AT )∗ = (A∗)T

A complex matrix with A = A† is Hermitian.

I The eigenvalues of Hermitian matrix are real

I The eigenvectors of Hermitian matrix are orthogonal

(See lecture notes for proofs)
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8. Diagonalization of a matrix

To “diagonalize” a matrix:

I Take a given N × N matrix A

I Construct a N × N matrix S that has the eigenvectors of A
as its columns

I Then the "similarity transformation" matrix A′ → (S−1AS)
is diagonal and has the eigenvalues of A as its diagonal
elements.
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Example: adapted from CP3 June 2010. No. 10
Let the columns of the matrix S be the normalized eigenvectors of the
Hermitian matrix A. Show that D = S−1AS is a diagonal matrix. What
are the diagonal elements of D? [5]

I xj , λj are the eigenvectors/values of operator A: Axj = λjxj

I Consider a similarity transformation from some basis |e〉 → |e′〉
A→ A′ = S−1AS, where the columns j of the matrix S are the
special case of the eigenvectors of the matrix A,
i.e. Sij ≡ (xj )i (for the i th component of xj ).

 ↑ ↑ · · ·
x1 x2 · · ·
↓ ↓ · · ·


I Consider the individual elements of S−1AS in this case

A′ij = (S−1AS)ij

=
∑

k (S−1)ik (
∑

m AkmSmj ) =
∑

k
∑

m(S−1)ik AkmSmj

=
∑

k
∑

m(S−1)ik Akm(xj )m =
∑

k (S−1)ikλj (xj )k

=
∑

k λj (S−1)ik Skj = λjδij where δij is the Kronecker delta.

Hence S−1AS is a diagonal matrix with the
eigenvalues of A along the diagonal.
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