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5. Solutions to simultaneous linear equations

» We can write the set of simultaneous linear equations as a
matrix equation:
Ax = b, (Ais called the coefficient matrix ). i.e.

apn  ap - an X1 by
at  ap -+ ax X2 | _| b2 1)
am am2 -+ @mn Xn bm

where a; and b; have known values, x; are unknown.

» We can define the augmented matrix

air  aip - ap | by
a1 ap - @ | b @
am ame -+ amn | bm

» If the b; are all zero, then the system of equations is called
homogeneous, otherwise its inhomogeneous.



Unique solutions to simultaneous equations

» Consider N =3

anx + apy + aisz = b
aX + apy + asz = b (3)
azX + aszy + asz = bs

» Condition for the solution to be unique:

» [Rank of coefficient matrix] = [Rank of augmented matrix] =
= [Number of unknowns]

» OR alternatively |A|#0 and b # 0.

» Note that |A| # 0 and b = 0 gives the trivial solution
(vaa Z) = (07070)



Unique solution: matrix inversion method

ajy  arp -+ an X1 by
a1 dx - ap X2 | _| b ()
ant  an2 -+ @m Xn bn

» The equations are written Ax = b, therefore we write
x=A"1b where (A~1); = (CT);//|A| as before.

» Hence evaluate A~" and the solutions drop out trivially

» Note the following:

» The method needs |A| to be # 0 (i.e. non-singular),
» If all the b; = 0, only the trivial solution x; = 0 will be found.



Unique solution : Cramer’s method

aix + by + cz = v
ax + by + 0z = v = Ax=v )
ax + by + @z = v»3

Define Cramer’s determinant — |A| with columns replaced by the
RHS of equations:

vi b ¢ a v oo a b v
Ay=| Vv b ¢ |, Ay: a Vo C |, A,=|a b W
vi b3 C3 a V3 C3 a by v
(6)
a b1 Cq
and [Aj=| @& b2 ¢ (7)
a bz c3

Solution is then:
x=Ax/|Al, y=40y/|Al, z=A7/]A.



Solutions do not exist

» Solutions do not exist if:

» [Al=0andb #0 and
[Rank of coefficient matrix] < [Rank of augmented matrix]

» i.e. |A| = 0 and any of Cramer’s determinants are not equal
to zero (*)

(*) since it is the Cramer’s determinants (either = 0 or # 0)
which determine the rank of the augmented matrix.



Example: CP3 September 2007. No. 8

For which value of ¢ does the set of linear equations

2x+y—-2z = 1
-2x+3y+z = 3
cx+4y—z = d

not have a unique solution? Give a geometrical interpretation of the
set of equations for this value of c distinguishing the cases d = 4 and

d # 4. (8]
2 1 -2
» No unique solutionif| -2 3 1 | =0
c 4 -1

» Hence
(2x=7)—1x(2—c)+(-2)x(—8—-3¢c) = —14—2+c+16+6c =0

» No unique solution for c = 0



CP3 September 2007. No. 8, continued

»d=4, |Al=0

2x 4+ y 2z = 1 2 1 =2
—-2x + 3y + z = 3 = -2 3
4y - z = 4 0 4 -1

» Rank of coefficient matrix = 2
» Get rank of augmented matrix

2 1 1 1 1
Cramer’s determinants, A,,Ax: | -2 3 3 |=| 3 3
0 4 4 4 4
(since two columns are equal).
2 1 -2
And Ay: —2 3 1 | =0 (sinceit’sidentical to |A|)
0 4 -1

» Hence rank of augmented matrix = 2




CP3 September 2007. No. 8, continued

» d =4 : All three planes meet on a common line

» Since all Cramer’s determinants are zero, AND no single
equation is a multiple of the other.

» An infinite number of solutions.
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CP3 September 2007. No. 8, continued

d#4, |A=0

2x 4+ y - 2z = 1 2 1 -2 |1

—-2x + 3y + z = 3 = -2 3 1|3
4y - z = d 0 4 —-1)|d

Rank of coefficient matrix = 2
Get rank of augmented matrix

2 1 1
-2 3 3
0 4 d

Cramer’s determinants: e.g A; =

#0

Hence, [Rank of coefficient matrix] < [Rank of
augmented matrix]

)



CP3 September 2007. No. 8, continued

<

e

» Lines of intersection of the planes are parallel to each
other.

» No solutions exist
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Homogeneous equations

|[Al=0andb =0

anx + apy + aiz
aX +  axpy + axaz
a1X + aspy + asz

Il
coo
—
)
&

b = 0 gives the trivial solution (x, y, z) = (0,0,0)
unless |A| =0

Three planes meet on a common line passing through the
origin, note that only the ratios x/y, x/z, y/z can be
found.

Example
2x + 3y + 4z
X + 2y + 2z
-X 4+ y - 2z

0 (1)
0 (2 9
0 (3)

|JAl=0andb =0
Line through the originis  y =0, x = -2z



6. Rotation and matrix operators

» We can write a transformation in matrix form:
X = Sx’

where S is a transformation matrix.
This transforms the change of basis, and also transforms
the vector components x’ — x.

» The inverse transformation transforms x back to x’, leaving
it unchanged by the two successive transformations.

x' =S 1x



Example: CP3 September 2009. No. 10

First part: The axes of a coordinate system (x', y’) are rotated by an
angle 0 in the counter-clockwise direction with respect to the axes of
a coordinate system (x,y), and the two systems share a common
origin. Show that the coordinates x’ and y’ can be expressed in
terms of x and y using the relation

)'d X cosf sind
(y, ) :R(9)< y ) . where R(0) = ( _sind cosd ) .

Show that R~' = R, where R is the transpose of R.. [5]



()

x' =rcosa

X = rcos(f + «)
/ __ _XCOS«

- X = cos(0+a)

xcosa = x' cosfcosa — x’sinfsina
Since x’sina = y’cosa

x = x'cosf—y'sinf

» Coordinate transformation:
X\ [ cos@® —sing
y )] sinf  cos@

» Take the inverse:

X\ cos®  sinf
y'" )] 7\ —sinf cosb

) o
) an

X

y =rsina
y =rsin(0 + «)

ysina = y’sinfcos a + y’ cosfsina
Since y'cosa = x'sina

y = x'sinf+y’ cos o

These equations

relate the coordinates
of r measured in the
(x, y) frame with those
measured in the rotated

(x',y’) frame



Rotation of a vector in fixed 3D coord. system

» In 3D, we can rotate a vector r about any one of the three axes

r'=R(0)r
A rotation about the z axis is given by
cosf —sing 0
R.(0)=| sing cosf® O (12)
0 0 1

» For rotations about the x and y axes

1 0 0 cosy 0 siny
Rx(a)=| 0 cosa —sina |, Ry(vy)= 0 1 0

0 sina cosa —siny 0 cosxy
(13)

» But note that now for successive rotations:
Rz(0)Rx(c) # Rx(a)Rz(0)



Matrices and quadratic forms

Example: CP3 September 2009. No. 10

Second part: The equation of an ellipse whose major axis is inclined
at an angle with the respect to the x-axis may be written as

f(x,y) =2x? 4+ 2y? — 2xy = 9. Find the elements of the symmetric

matrix M that satisfies the relation (x,y) M < ; ) . [3]

» Write XT AX in generalized form:
(x,y)( i Z ) ( ; ) = (x7y)( iﬁis}}j ) = ax?+bxy+cxy+dy?

» Compare coefficients - a=2,d=2,(b+c) = -2
Write in symmetrical form b=c = —1

» Hence in matrix representation:

(5 2)() s



7. Eigenvalues and Eigenvectors

» An eigenvalue equation is one that transforms as
Alx) = Alx)
where ) is just a number (can be complex)

» Ahas transformed |x) into a multiple of itself

» Vector |x) is the eigenvector of the operator A
A is the eigenvalue.

» The operator A can have in principle a series of
eigenvectors |x;) and eigenvalues \;.

» Write in matrix form:

Ax = \X where A is an N x N matrix.

» In QM, often deal with normalized eigenvectors:
xTx = (x|x) = 1 (where xT = x*T — Hermitian conjugate)
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Finding eigenvalues and eigenvectors

» Eigenvalue equation:
Ax = \x = MAlx (lis the unit matrix)
» Ax —AIx=0
» (A= X)x=0
» A set of linear simultaneous equations of degree N.
» Homogeneous equations only have a non-trivial solution
(x; non-zero) if the determinant

A= A| =0



Example: CP3 June 2010. No. 4

Find the eigenvalues and normalized eigenvectors of the
cosf —sind
sinf  cosd
(real) rotation angle. Show explicitly that the eigenvectors are

orthogonal. [8]

two-dimensional rotation matrix < where 0 is the

» First the eigenvalues: start from |A— X/ =0
cosfd — A —sind

sing  cosg—|=0

> (cosf — )2 +sin®h =22 —2\cosf+1=0
» A =cosf =+ ;v/4cos?0 —4 =cosf +isind

>\ = eiia

21
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CP3 June 2010. No. 4, continued

Now find the eigenvectors - substitute into the eigenvalue
equation:

( cosf —sinf ) ( X ) :(coseiisine)( X >
sinfd cosé y y
Xcosf — ysing = x(cosf £ isind)

xsinf + ycosf = y(cosf + isinf)
—ysing = tixsind

xsinf = +iysing

X/y ==i

Setx=1 — Eigenvectors :

(1) - ()

(Eigenvectors should be multiplied by some arbitrary phase e')
(Normalization - ~5 comes from conditions %1!4 =1, MJ/J =1)
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CP3 June 2010. No. 4, continued

» Orthgonality of Eigenvectors

> Frombefore:¢+=\}2<li>, 1#—:12(1/)

.wiw_:;zxg(u,_i))(ji):o



Eigenvalues and eigenvectors of an Hermitian matrix

» Hermitian conjugate of a matrix: At = (AT)* = (A*)7
A complex matrix with A = A" is Hermitian.

» The eigenvalues of Hermitian matrix are real

» The eigenvectors of Hermitian matrix are orthogonal

(See lecture notes for proofs)

24



8. Diagonalization of a matrix

To “diagonalize” a matrix:
» Take a given N x N matrix A

» Construct a N x N matrix S that has the eigenvectors of A
as its columns

» Then the "similarity transformation" matrix A’ — (S~'AS)

is diagonal and has the eigenvalues of A as its diagonal
elements.

25



Example: adapted from CP3 June 2010. No. 10

Let the columns of the matrix S be the normalized eigenvectors of the
Hermitian matrix A. Show that D = S~'AS is a diagonal matrix. What
are the diagonal elements of D? [5]

» X;, Aj are the eigenvectors/values of operator A:  Ax; = \X;

» Consider a similarity transformation from some basis |e) — |e’)
A — A = S~'AS, where the columns j of the matrix S are the

special case of the eigenvectors of the matrix A, J J o
i.e. Sj=(x;); (forthe i component of x;). i

» Consider the individual elements of S—1AS in this case
Ajj = (S5 1AS);

= 2 k(ST AkmSmi) = ke Xom(S™)ikAkm Sy
=2k Xm(8™)ikAkm(X)m = 324 (SN (X))
=3, NS kS = \id;  where §; is the Kronecker delta.

Hence S—'AS is a diagonal matrix with the
eigenvalues of A along the diagonal.
26
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