CP3 REVISION LECTURES

 VECTORS AND MATRICES

 VECTORS AND MATRICES}

Lecture 1
Prof. N. Harnew
University of Oxford

$$
\text { TT } 2013
$$

OUTLINE

1. Vector Algebra
2. Vector Geometry
3. Types of Matrices and Matrix Operations
4. Determinants and matrix inverses

1. Vector Algebra

Scalar (or dot) product definition:

$$
\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=|\underline{\mathbf{a}}| \cdot|\underline{\mathbf{b}}| \cos \theta \equiv a b \cos \theta
$$

- $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

$$
\begin{aligned}
& \text { Vector (or cross) product definition: } \\
& \qquad \underline{\mathbf{a}} \times \underline{\mathbf{b}}=|\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin \theta \underline{\hat{\mathbf{n}}}
\end{aligned}
$$

$\underline{\mathrm{a}} \mathrm{x} \underline{\mathrm{b}} \quad$; the page
a

- To get direction of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ use right hand rule
- $\underline{\hat{n}}$ is a unit vector in a direction perpendicular to both $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$
$\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left|\begin{array}{ccc}\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ a_{x} & \bar{a}_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$

Geometrical interpretation of vector product

Vector product is related to the area of a triangle:

- Height of triangle $h=a \sin \theta$
- Area of triangle $=A_{\text {triangle }}=$ $1 / 2 \times$ base \times height
$=\frac{b h}{2}=\frac{a b \sin \theta}{2}=\frac{|\underline{a} \times \underline{\mathbf{b}}|}{2}$
- Vector product therefore gives the area of the parallelogram: $A_{\text {parallelogram }}=|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$

Scalar and vector triple products

The scalar triple product $\quad \underline{\mathbf{a}} \cdot(\underline{\mathbf{b}} \times \underline{\mathbf{c}}) \quad(\equiv[\underline{\mathbf{a}}, \underline{\mathbf{b}}, \underline{\mathbf{c}}])$

- In determinant form: $\underline{\mathbf{a}} .(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\left|\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z}\end{array}\right|$
- Cyclic permutations of $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ and $\underline{\mathbf{c}}$ leaves the triple scalar product unaltered: $\quad \underline{\mathbf{a}} \cdot(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=\underline{\mathbf{c}} .(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=\underline{\mathbf{b}} .(\underline{\mathbf{c}} \times \underline{\mathbf{a}})$ Non-cyclic permutations change the sign of the STP

The vector triple product $\quad \underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$

- This is not associative. i.e. $\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}}) \neq(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}}$
- It can be shown using components:

$$
\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}) \underline{\mathbf{b}}-(\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}) \underline{\mathbf{c}}
$$

This identity is given on the Prelims data sheet.

Example: CP3 June 2010. No. 4

Show that for any four vectors $\mathbf{a}, \underline{\mathbf{b}}, \mathbf{c}$, and $\underline{\mathrm{d}}$, $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot(\underline{\mathbf{c}} \times \underline{\mathbf{d}})=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{d}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{d}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{c}})$. [4]

- $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot(\underline{\mathbf{c}} \times \underline{\mathbf{d}})=\underline{\mathbf{d}} \cdot((\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}})=\underline{\mathbf{c}} \cdot(\underline{\mathbf{d}} \times(\underline{\mathbf{a}} \times \underline{\mathbf{b}}))$ (Using properties of scalar triple product)
- $=\underline{\mathbf{c}} \cdot((\underline{\mathbf{d}} \cdot \underline{\mathbf{b}}) \underline{\mathbf{a}}-(\underline{\mathbf{d}} \cdot \underline{\mathbf{a}}) \underline{\mathbf{b}})$
(Using identity of vector product)
- $=(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{d}})-(\underline{\mathbf{a}} \cdot \underline{\mathbf{d}})(\underline{\mathbf{b}} \cdot \underline{\mathbf{c}})$ (Rearranging)

Geometrical interpretation of STP

The triple scalar product can be interpreted as the volume of a parallelepiped:

- [Volume] $=$ [Area of base] \times
[Vertical height of parallelepiped]
- [Area of base] $=|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$ (vector direction is perpendicular to the base)

- [Vertical height]
$=|\underline{\mathbf{c}}| \cos \phi=\underline{\mathbf{c}} \cdot\left(\frac{\underline{\mathbf{a}} \times \underline{\mathbf{b}}}{(\underline{\mathbf{a}} \times \underline{\mathbf{b}} \mid}\right)$
- Hence $\quad[$ Volume $]=|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|\left(\underline{\mathbf{c}} \cdot\left(\frac{\mathbf{a} \times \underline{\mathbf{b}}}{(\underline{\mathbf{a}} \times \underline{\mathbf{b}} \mid}\right)\right)=\underline{\mathbf{c}} \cdot(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$
- Obviously if $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ and $\underline{\mathbf{c}}$ are coplanar, volume $=0$.

2. Vector Geometry

Representation of lines in vector form

- Point A is any fixed position on the line with position vector a. Line direction is defined by vector $\underline{\mathbf{b}}$. Position vector \underline{r} is a general point on the line.
- The equation of the line is then:

$$
\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}
$$

where λ takes all values to give all positions on the line.

Distance from a point to a line

- Line is given by $\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$
- The minimum distance, d, from P to the line is when angle $A B P$ is a right angle.
- From geometry: $d=|\underline{\mathbf{p}}-\underline{\mathbf{a}}| \sin \theta$
- d is therefore the magnitude of the vector product $(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \times \underline{\mathbf{b}} /|\underline{\mathbf{b}}|$
- Hence $d=|(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \times \underline{\hat{\mathbf{b}}}|$

Example: CP3 June 2005. No. 6

What is the shortest distance from the point $\underline{\mathbf{P}}$ to the line $\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$? Determine this shortest distance for the case where $\underline{p}=(2,3,4)$ and the line is the x-axis. [5]
$\rightarrow d=|(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \times \underline{\hat{\mathbf{b}}}|$ from before.
\rightarrow In the example, line is the x-axis :
$\underline{\hat{\mathbf{b}}}=(1,0,0) ; \quad \underline{\mathbf{a}}=(0,0,0)$
$\rightarrow \mathrm{d}=|((2,3,4)-(0,0,0)) \times(\mathbf{1}, \mathbf{0}, \mathbf{0})|$
$=\sqrt{ }\left(3^{2}+4^{2}\right)=5$

Minimum distance from a line to a line

- Two lines in 3D

$$
\underline{\mathbf{r}}_{1}=\underline{\mathbf{a}}_{1}+\lambda_{1} \underline{\mathbf{b}}_{1}, \quad \underline{\mathbf{r}}_{2}=\underline{\mathbf{a}}_{2}+\lambda_{2} \underline{\mathbf{b}}_{2}
$$

- The shortest distance is represented by the vector perpendicular to both lines
- The unit vector normal to both lines is: $\quad \hat{\mathbf{n}}=\frac{\mathbf{b}_{\mathbf{b}} \times \underline{\mathbf{b}}_{\mathbf{2}}}{\left|\underline{\mathbf{b}}_{\mathbf{1}} \times \underline{\mathbf{b}}_{\mathbf{2}}\right|}$

$$
|\underline{\mathbf{d}}|=\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right) \cdot \underline{\hat{\mathbf{n}}}=\left(\underline{\mathbf{a}}_{1}-\underline{\mathbf{a}}_{2}\right) \cdot \frac{\underline{\mathbf{b}}_{1} \times \underline{\mathbf{b}}_{2}}{\left|\underline{\mathbf{b}}_{1} \times \underline{\mathbf{b}}_{2}\right|}
$$

Representation of planes in vector form

- Vector a is any position vector to the plane. \underline{r} is a position vector to a general point on the plane.

- The vector equation for the plane is written:

$$
(\underline{\mathbf{r}}-\underline{\mathbf{a}}) \cdot \underline{\hat{\mathbf{n}}}=0
$$

where $\underline{\hat{\hat{n}}}$ is the unit vector perpendicular to the plane.

- The plane can also be written as

$$
\underline{\mathbf{r}} . \hat{\mathbf{n}}=l x+m y+n z=d
$$

where $\underline{\hat{\hat{n}}}=(I, m, n), \underline{\mathbf{r}}=(x, y, z) \& d$ is perpendicular distance

Minimum distance from a point to a plane

- Consider vector $(\mathbf{p}-\underline{\mathbf{a}})$ which is a vector from the plane $(\underline{\mathbf{r}}-\underline{\mathbf{a}}) . \underline{\hat{\mathbf{n}}}=0$ to the point P

- The component of $(\underline{\mathbf{p}}-\underline{\mathbf{a}})$ normal to the plane is equal to the minimum distance of P to the plane.

$$
\text { i.e. } d=(\underline{\mathbf{p}}-\underline{\mathbf{a}}) \cdot \underline{\hat{\mathbf{n}}}
$$

(sign depends on which side of plane the point is situated).

Intersection of a line with a plane

- A line is given by $\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}$
- A normal vector to the plane is $\underline{\mathbf{n}}=l \underline{\mathbf{i}}+m \underline{\mathbf{j}}+n \underline{\mathbf{k}}$
- To get the intersection point, substitute equation of line $\underline{\mathbf{r}}=\underline{\mathbf{a}}+\lambda \underline{\mathbf{b}}=(x, y, z)=\left(a_{x}+\lambda b_{x}, a_{y}+\lambda b_{y}, a_{z}+\lambda b_{z}\right)$ into equation of plane $l x+m y+n z=d$
- Solve for λ and substitute into the equation of the line. This gives the point of intersection.

Example: CP3 June 2008. No. 7

First part: \quad A line is given by the equation $\underline{\underline{r}}=3 \underline{\mathbf{i}}-\underline{\mathbf{j}}+(2 \underline{\mathbf{i}}+\underline{\mathbf{j}}-2 \underline{\mathbf{k}}) \lambda$ where λ is a variable parameter and $\mathbf{i}, \mathbf{j}, \underline{\mathbf{k}}$ are unit vectors along the cartesian axes x, y, z. The equation of the plane containing this line and the point $(2,1,0)$ may be expressed in the form $\underline{\mathbf{r}} \cdot \underline{\hat{\mathbf{n}}}=d$ where $\underline{\hat{\hat{n}}}$ is a unit vector and d is a constant. Find $\underline{\hat{n}}$ and d, and explain their geometrical meaning.

- Two points in the plane are $(3,-1,0)$ (for $\lambda=0)$ and $(5,0,-2)$ (for $\lambda=1$)
- Two lines in the plane are
$(5,0,-2)-(3,-1,0)=(2,1,-2)$ and $(2,1,0)-(5,0,-2)=(-3,1,2)$
- Therefore a normal to the plane is: $\left|\begin{array}{ccc}\frac{\mathbf{i}}{2} & \frac{\mathbf{j}}{1} & \underline{\mathbf{k}} \\ -3 & 1 & -2\end{array}\right|=(4,2,5)$
$\rightarrow \quad \underline{\hat{\mathbf{n}}}$ is $(4,2,5) / \sqrt{ } 45$
- Plane $\underline{\mathbf{r}} \cdot \underline{\hat{\mathbf{n}}}=d$ where

$$
d=(\overline{3},-\overline{1}, 0) \cdot((4,2,5) / \sqrt{ } 45)=(12-2) / \sqrt{ } 45=10 /(3 \sqrt{ } 5)
$$

is the closest distance of plane to origin.

CP3 June 2008. No. 7, continued

Second part: Find the volume of the tetrahedron with its four corners at: the origin, the point $(2,1,0)$, and the points on the line with $\lambda=0$ and $\lambda=1$.

- A tetrahedron is a volume composed of four triangular faces, three of which meet at each vertex
- The volume of a tetrahedron is equal to $1 / 6$ of the volume of a parallelepiped that shares three converging edges with it.
- Volume is $1 / 6$ the triple scalar product of $(2,1,0),(3,-1,0)$ and (5, 0, -2)
- Volume $=\frac{1}{6}\left|\begin{array}{ccc}2 & 1 & 0 \\ 3 & -1 & 0 \\ 5 & 0 & -2\end{array}\right|=(2 \times 2-1 \times(-6)+0) / 6=\frac{5}{3}$

Vector representation of a sphere

$$
|\underline{\mathbf{r}}-\underline{\mathbf{c}}|^{2}=a^{2}
$$

alternatively
$r^{2}-2 \underline{\mathbf{r}} \cdot \underline{\mathbf{c}}+c^{2}=a^{2}$

- $\underline{\mathbf{c}}$ is the position vector to the centre of the sphere
- $a=|\underline{\mathbf{a}}|$ is the sphere radius (scalar)
- The two points that are the intersection of the sphere with a line $\underline{\mathbf{r}}=\underline{\mathbf{p}}+\lambda \underline{\mathbf{q}}$ are given by solving the quadratic for λ :

$$
(\underline{\mathbf{p}}+\lambda \underline{\mathbf{q}}-\underline{\mathbf{c}}) \cdot(\underline{\mathbf{p}}+\lambda \underline{\mathbf{q}}-\underline{\mathbf{c}})=a^{2}
$$

3. Types of Matrices and Matrix Operations

a) The diagonal matrix

- A is diagonal if $A_{i j}=0$ for $i \neq j$ (for a square matrix). i.e. the matrix has only elements on the diagonal which are different from zero.
b) The unit matrix
- A diagonal matrix $/$ with all diagonal elements $=1$.

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \tag{1}\\
0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

This has the property $A I=I A=A$.
c) Transpose of a matrix

- The transpose of a matrix A is a matrix B with the rows and columns of A interchanged.
- $B=A^{T} \Rightarrow B_{j i}=A_{i j}$
- $(A B)^{T}=B^{T} A^{T}$ (note that the order of A and B is reversed).
d) Hermitian conjugate
- Take the complex conjugate of the transpose:

$$
A^{\dagger}=\left(A^{T}\right)^{*}=\left(A^{*}\right)^{T}
$$

- In analogy to the property of the transpose, $\quad(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
- A complex matrix with $A=A^{\dagger}$ is Hermitian.

If $A=-A^{\dagger}$, the matrix is anti-Hermitian.

Example: CP3 September 2010. No. 7
Define a Hermitian operator. Let A and B be two Hermitian operators. Which of the following operators are also Hermitian?

$$
i(\mathbf{A B}-\mathbf{B A}), \quad(\mathbf{A B}-\mathbf{B A}), \quad \frac{1}{2}(\mathbf{A B}+\mathbf{B A})
$$

If C is a non-Hermitian operator, is the product $C^{\dagger} C$ Hermitian?
Definition of Hermitian operator: $A^{\dagger}=A$ where $A^{\dagger}=\left(A^{T}\right)^{*}$
a) Hermitian of $i(A B-B A)$
$[i(A B-B A)]^{\dagger}=-i\left(B^{\dagger} A^{\dagger}-A^{\dagger} B^{\dagger}\right)=-i(B A-A B)=i(A B-B A)$

- YES Hermitian
b) $(A B-B A)^{\dagger}=\left(B^{\dagger} A^{\dagger}-A^{\dagger} B^{\dagger}\right)=(B A-A B)=-(A B-B A)$
- NO not Hermitian
c) $\frac{1}{2}(A B+B A)^{\dagger}=\frac{1}{2}\left(B^{\dagger} A^{\dagger}+A^{\dagger} B^{\dagger}\right)=\frac{1}{2}(B A+A B)$
- YES Hermitian
d) Hermitian of $C^{\dagger} C$ $\left(C^{\dagger} C\right)^{\dagger}=C^{\dagger} C^{\dagger \dagger}=C^{\dagger} C$
- YES Hermitian
e) Inverse of a matrix
- For a matrix A, the inverse of the matrix A^{-1} is such that: $A A^{-1}=A^{-1} A=I$.
- In analogy to the property of the transpose, $(A B)^{-1}=B^{-1} A^{-1}$
- A real matrix with $A^{T}=A^{-1}$ is orthogonal,
- A matrix with $A^{\dagger}=A^{-1}$ is unitary,
- A matrix with $A A^{\dagger}=A^{\dagger} A$ is normal, commutes with its Hermitian congugate.
e) Trace of an $n \times n$ matrix
- Defined as the sum of diagonal elements (the matrix must be square):

$$
\operatorname{Tr} A=A_{11}+A_{22}+\cdots+A_{n n}=\sum_{i=1}^{n} A_{i i}
$$

- Can easily show
- $\operatorname{Tr}(A \pm B)=\operatorname{Tr} A \pm \operatorname{Tr} B$
- $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A) \quad$ (cyclic permutations).
e) Rank of an $m \times n$ matrix
- The rank of an $m \times n$ matrix is defined as the number of linear independent rows or columns in the matrix (whichever is the smallest).
- An alternative definition: the rank of an $m \times n$ matrix is equal to the size of the largest square sub-matrix that is contained in the m rows and n columns of the matrix whose determinant is non-zero.

Matrix operations

- Matrix summation $\quad C=A+B, \rightarrow C_{i j}=(A+B)_{i j}=A_{i j}+B_{i j}$
- Multiplication by a scalar $\rightarrow \lambda A_{i j}=(\lambda A)_{i j}$
- Matrix multiplication $C=A . B$
$C_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i n} B_{n j}$
i.e. $C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}$ for all $i=1$ to m and all $j=1$ to p. Note that $A B \neq B A$

4. Determinants and matrix inverses

Evaluating a general $\mathrm{N} \times \mathrm{N}$ determinant

- For an $\mathrm{N} \times \mathrm{N}$ matrix A, for each element $A_{i j}$ we define a minor $M_{i j}$
- $M_{i j}$ is the determinant of the $(\mathrm{N}-1) \times(\mathrm{N}-1)$ matrix obtained from A by deleting row i and column j.
- We also define cofactor $C_{i j}=(-1)^{(i+j)} M_{i j}$ (the "signed" minor of the same element).
- The determinant is then defined as the sum of the products of the elements of any row or column with their corresponding cofactors.
i.e. $\operatorname{det}(A)=\sum_{j=1}^{N} A_{m j} C_{m j}=\sum_{i=1}^{N} A_{i k} C_{i k}$
for $A N Y$ row m or column k.

Useful properties of determinants

- If we interchange 2 adjacent rows or 2 adjacent columns of A to give B, then $\operatorname{det}(B)=-\operatorname{det}(A)$
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
- $\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det}(A) \times \operatorname{det}(B)$
- $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$
- If B results from multiplying one row or column of A by a scalar λ then $\operatorname{det}(B)=\lambda \times \operatorname{det}(A)$
- For a matrix A where two or more rows (or columns) are equal or linearly dependent, then $\operatorname{det}(A)=0$
- If B results from adding a multiple of one row to another row, or a multiple of one column to another column, then $\operatorname{det}(B)=\operatorname{det}(A) \quad($ determinant unchanged $)$.

Example: CP3 September 2007, No. 2

A is a non-singular 3×3 matrix and $B=2 A^{-1}$. Calculate $\operatorname{Tr}(A B)$ and $\operatorname{det}(A) \operatorname{det}(B)$.

- $\operatorname{Tr}(A B)=\operatorname{Tr}\left(2 A A^{-1}\right)=2 \operatorname{Tr}(I)=6$
- $\operatorname{det}(A) \times \operatorname{det}(B)=\operatorname{det}(A) \times \operatorname{det}\left(2 A^{-1}\right)$

$$
=\operatorname{det}\left(2 A A^{-1}\right)=\operatorname{det}(2 I)=2^{3}=8
$$

Inverse of a matrix

For a square matrix $A: \quad A A^{-1}=A^{-1} A=1$

Prescription to find A^{-1} :

1. Start from a square matrix A

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{2}\\
a_{12} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

2. Form the matrix of cofactors of A : $C=\left(\begin{array}{cccc}C_{11} & C_{12} & \cdots & C_{1 n} \\ C_{21} & C_{22} & \cdots & C_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ C_{n 1} & C_{n 2} & \cdots & C_{n n}\end{array}\right)$
where cofactor $C_{i j}=[$ minor $] \times[$ sign $]=\mathrm{M}_{\mathrm{ij}} \times(-1)^{(\mathrm{i}+\mathrm{j})}$ as before.
3. Take the transpose $C \Rightarrow C^{T} \quad$ (the adjugate matrix)
4. Divide by the determinant of A.

Then the elements of A^{-1} are

$$
\left(A^{-1}\right)_{i k}=\left(C^{\top}\right)_{i k} /|A|=C_{k i} /|A|
$$

If $|A|=0$, the matrix the matrix has no inverse (i.e. singular).

Example: CP3 June 2010. No. 1

Determine whether the following matrices are orthogonal, unitary, hermitian, or none of these (note that some may be more than one):
$\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right), \frac{1}{2}\left(\begin{array}{ccc}1 & 0 & -\sqrt{ } 3 \\ 0 & 1 & 0 \\ \sqrt{ } 3 & 0 & 1\end{array}\right)$

- 3 definitions and 9 potential tests
- $A=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right), A^{T}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), A^{\dagger}=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)=\boldsymbol{A} \rightarrow$ Hermitian
- $A=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right), A^{-1}=\frac{1}{(-1)}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)=A^{\dagger} \quad \rightarrow$ Unitary
- $A=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right) \quad A^{-1} \neq A^{T} \rightarrow$ NOT orthogonal
- Similarly $A=\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right) \rightarrow$ Unitary, NOT Hermitian, NOT orthogonal

CP3 June 2010. No. 1, continued

$-\frac{1}{2}\left(\begin{array}{ccc}1 & 0 & -\sqrt{ } 3 \\ 0 & 1 & 0 \\ \sqrt{ } 3 & 0 & 1\end{array}\right), \quad A^{T}=\frac{1}{2}\left(\begin{array}{ccc}1 & 0 & \sqrt{ } 3 \\ 0 & 1 & 0 \\ -\sqrt{ } 3 & 0 & 1\end{array}\right)$,

$$
A^{\dagger}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & \sqrt{ } 3 \\
0 & 1 & 0 \\
-\sqrt{ } 3 & 0 & 1
\end{array}\right) \neq A \rightarrow \text { NOT Hermitian }
$$

- Determinant: $\quad\left(\frac{1}{2}\right)^{3}\left|\begin{array}{ccc}1 & 0 & -\sqrt{ } 3 \\ 0 & 1 & 0 \\ \sqrt{ } 3 & 0 & 1\end{array}\right| \rightarrow|A|=\frac{1}{8}(1-0+3)=\frac{1}{2}$
- Matrix inverse, get matrix of co-factors:

$$
\begin{aligned}
& C=\frac{1}{4}\left(\begin{array}{ccc}
1 & 0 & -\sqrt{ } 3 \\
0 & 4 & 0 \\
\sqrt{ } 3 & 0 & 1
\end{array}\right), \quad C^{T}=\frac{1}{4}\left(\begin{array}{ccc}
1 & 0 & \sqrt{ } 3 \\
0 & 4 & 0 \\
-\sqrt{ } 3 & 0 & 1
\end{array}\right) \\
& A^{-1}=C^{T} /|A|=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & \sqrt{ } 3 \\
0 & 4 & 0 \\
-\sqrt{ } 3 & 0 & 1
\end{array}\right) \neq A^{\dagger} \rightarrow \text { NOT unitary }
\end{aligned}
$$

- $A^{-1} \neq A^{T} \rightarrow$ NOT orthogonal

