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1. Vector Algebra
Scalar (or dot) product definition:
a.b = |a|.|b| cos θ ≡ ab cos θ

I a.b = axbx + ay by + azbz

Vector (or cross) product definition:
a× b = |a||b| sinθ n̂

I To get direction of a× b use right hand rule

I n̂ is a unit vector in a direction
perpendicular to both a and b

a× b =

∣∣∣∣∣∣
i j k

ax ay az
bx by bz

∣∣∣∣∣∣

a

b

c = a x b
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Geometrical interpretation of vector product

Vector product is related to the area
of a triangle:

I Height of triangle h = a sinθ

I Area of triangle = Atriangle =
1/2 × base × height
= bh

2 = ab sinθ
2 = |a×b|

2
I Vector product therefore gives

the area of the parallelogram:
Aparallelogram = |a× b|
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Scalar and vector triple products

The scalar triple product a.(b× c) (≡ [a,b, c])

I In determinant form: a.(b× c) =

∣∣∣∣∣∣
ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣
I Cyclic permutations of a, b and c leaves the triple scalar

product unaltered: a.(b× c) = c.(a× b) = b.(c× a)
Non-cyclic permutations change the sign of the STP

The vector triple product a× (b× c)

I This is not associative. i.e. a× (b× c) 6= (a× b)× c

I It can be shown using components:

a× (b× c) = (a.c) b− (a.b) c

This identity is given on the Prelims data sheet.
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Example: CP3 June 2010. No. 4

Show that for any four vectors a, b, c, and d,
(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). [4]

I (a× b) · (c× d) = d · ((a× b)× c) = c · (d× (a× b))
(Using properties of scalar triple product)

I = c · ((d · b) a− (d · a) b)
(Using identity of vector product)

I = (a · c)(b · d)− (a · d)(b · c)
(Rearranging)
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Geometrical interpretation of STP

The triple scalar product can be interpreted as the volume of a
parallelepiped:

I [Volume] = [Area of base]×
[Vertical height of parallelepiped]

I [Area of base] = |a× b|
(vector direction is
perpendicular to the base)

I [Vertical height]
= |c| cosφ = c · ( a×b

|a×b|)

I Hence [Volume] = |a× b|
(
c · ( a×b

|a×b|)
)
= c · (a× b)

I Obviously if a,b and c are coplanar, volume = 0.
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2. Vector Geometry

Representation of lines in vector form

I Point A is any fixed position on the
line with position vector a. Line
direction is defined by vector b.
Position vector r is a general point
on the line.

I The equation of the line is then:

r = a+ λb

where λ takes all values to give all
positions on the line.
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Distance from a point to a line

I Line is given by r = a+ λb

I The minimum distance, d , from
P to the line is when angle ABP
is a right angle.

I From geometry: d = |p− a| sinθ

I d is therefore the magnitude of
the vector product (p−a)×b/|b|

I Hence d = |(p− a)× b̂|
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Example: CP3 June 2005. No. 6

What is the shortest distance from the point P to the line
r = a+ λb? Determine this shortest distance for the case
where p = (2,3,4) and the line is the x-axis. [5]

→ d = |(p− a)× b̂| from before.

→ In the example, line is the x-axis :
b̂ = (1,0,0); a = (0,0,0)

→ d = |((2,3,4)− (0,0,0))× (1,0,0)|
=
√
(32 + 42) = 5
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Minimum distance from a line to a line

I Two lines in 3D
r1 = a1 + λ1b1, r2 = a2 + λ2b2

I The shortest distance is represented by the vector
perpendicular to both lines

I The unit vector normal to both lines is: n̂ =
b1×b2
|b1×b2|

|d| = (a1 − a2).n̂ = (a1 − a2).
b1×b2
|b1×b2|
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Representation of planes in vector form

I Vector a is any position vector
to the plane. r is a position
vector to a general point on
the plane.

I The vector equation for the plane is written:

(r− a).n̂ = 0

where n̂ is the unit vector perpendicular to the plane.

I The plane can also be written as

r.n̂ = lx + my + nz = d

where n̂ = (l ,m,n), r = (x , y , z) & d is perpendicular distance
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Minimum distance from a point to a plane
I Consider vector (p− a) which is a vector from the plane
(r− a).n̂ = 0 to the point P

I The component of (p− a) normal to the plane is equal to
the minimum distance of P to the plane.

i.e. d = (p− a) . n̂

(sign depends on which side of plane the point is situated).
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Intersection of a line with a plane

I A line is given by r = a + λb

I A normal vector to the plane is n = li + mj + nk
I To get the intersection point, substitute equation of line

r = a + λb = (x , y , z) = (ax + λbx ,ay + λby ,az + λbz)
into equation of plane lx + my + nz = d

I Solve for λ and substitute into the equation of the line. This gives
the point of intersection.
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Example: CP3 June 2008. No. 7

First part: A line is given by the equation r = 3i− j+ (2i+ j− 2k)λ
where λ is a variable parameter and i, j, k are unit vectors along the
cartesian axes x, y, z. The equation of the plane containing this line
and the point (2,1,0) may be expressed in the form r · n̂ = d where n̂

is a unit vector and d is a constant. Find n̂ and d, and explain their
geometrical meaning. [5]

I Two points in the plane are (3,-1,0) (for λ = 0) and (5, 0,−2) (for λ = 1)
I Two lines in the plane are

(5, 0,−2)− (3,−1, 0) = (2, 1,−2) and (2, 1, 0)− (5, 0,−2) = (−3, 1, 2)

I Therefore a normal to the plane is:

∣∣∣∣∣∣
i j k

2 1 −2
−3 1 2

∣∣∣∣∣∣ = (4, 2, 5)

→ n̂ is (4, 2, 5)/
√

45
I Plane r · n̂ = d where

d = (3,−1, 0) · ((4, 2, 5)/
√

45) = (12− 2)/
√

45 = 10/(3
√

5)

is the closest distance of plane to origin.
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CP3 June 2008. No. 7, continued

Second part: Find the volume of the tetrahedron with its four corners
at: the origin, the point (2,1,0), and the points on the line with λ = 0
and λ = 1. [5]

I A tetrahedron is a volume composed of four triangular
faces, three of which meet at each vertex

I The volume of a tetrahedron is equal to 1/6 of the volume
of a parallelepiped that shares three converging edges with
it.

I Volume is 1/6 the triple scalar product of (2,1,0), (3,−1,0)
and (5,0,−2)

I Volume = 1
6

∣∣∣∣∣∣
2 1 0
3 −1 0
5 0 −2

∣∣∣∣∣∣ = (2× 2− 1× (−6)+ 0)/6 = 5
3
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Vector representation of a sphere

|r− c|2 = a2

alternatively

r2 − 2r · c+ c2 = a2

I c is the position vector to the
centre of the sphere

I a = |a| is the sphere radius (scalar)

I The two points that are the intersection of the sphere with a line
r = p+ λq are given by solving the quadratic for λ :

(p+ λq− c) · (p+ λq− c) = a2
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3. Types of Matrices and Matrix Operations

a) The diagonal matrix

I A is diagonal if Aij = 0 for i 6= j (for a square matrix).
i.e. the matrix has only elements on the diagonal which are
different from zero.

b) The unit matrix

I A diagonal matrix I with all diagonal elements = 1.
1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

 (1)

This has the property AI = IA = A.
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c) Transpose of a matrix

I The transpose of a matrix A is a matrix B with the rows and
columns of A interchanged.

I B = AT ⇒ Bji = Aij

I (AB)T = BT AT (note that the order of A and B is reversed).

d) Hermitian conjugate

I Take the complex conjugate of the transpose:
A† = (AT )∗ = (A∗)T

I In analogy to the property of the transpose, (AB)† = B†A†.

I A complex matrix with A = A† is Hermitian.
If A = −A† , the matrix is anti-Hermitian.
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Example: CP3 September 2010. No. 7
Define a Hermitian operator. Let A and B be two Hermitian operators.
Which of the following operators are also Hermitian?

i(AB−BA), (AB−BA), 1
2 (AB+BA)

If C is a non-Hermitian operator, is the product C†C Hermitian? [6]
Definition of Hermitian operator: A† = A where A† = (AT )∗

a) Hermitian of i(AB − BA)
[i(AB − BA)]† = −i(B†A† − A†B†) = −i(BA− AB) = i(AB − BA)

I YES Hermitian

b) (AB − BA)† = (B†A† − A†B†) = (BA− AB) = −(AB − BA)
I NO not Hermitian

c) 1
2(AB + BA)† = 1

2(B
†A† + A†B†) = 1

2(BA + AB)

I YES Hermitian

d) Hermitian of C†C
(C†C)† = C†C†† = C†C

I YES Hermitian
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e) Inverse of a matrix

I For a matrix A, the inverse of the matrix A−1 is such that:
AA−1 = A−1A = I.

I In analogy to the property of the transpose,
(AB)−1 = B−1A−1

I A real matrix with AT = A−1 is orthogonal ,

I A matrix with A† = A−1 is unitary ,

I A matrix with AA† = A†A is normal , commutes with its
Hermitian congugate.
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e) Trace of an n × n matrix

I Defined as the sum of diagonal elements (the matrix must
be square):

Tr A = A11 + A22 + · · ·+ Ann =
∑n

i=1 Aii

I Can easily show
I Tr(A± B) = TrA± TrB
I Tr(ABC) = Tr(CAB) = Tr(BCA) (cyclic permutations).

e) Rank of an m × n matrix

I The rank of an m × n matrix is defined as the number of
linear independent rows or columns in the matrix
(whichever is the smallest).

I An alternative definition: the rank of an m × n matrix is
equal to the size of the largest square sub-matrix that is
contained in the m rows and n columns of the matrix
whose determinant is non-zero.
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Matrix operations

I Matrix summation C = A + B,→ Cij = (A + B)ij = Aij + Bij

I Multiplication by a scalar→ λAij = (λA)ij

I Matrix multiplication C = A.B
Cij = Ai1B1j + Ai2B2j + · · ·+ AinBnj

i.e. Cij =
∑n

k=1 Aik Bkj for all i = 1 to m and all j = 1 to p.
Note that AB 6= BA
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4. Determinants and matrix inverses

Evaluating a general N × N determinant

I For an N × N matrix A, for each element Aij we define a
minor Mij

I Mij is the determinant of the (N-1) × (N-1) matrix obtained
from A by deleting row i and column j .

I We also define cofactor Cij = (−1)(i+j)Mij (the “signed”
minor of the same element).

I The determinant is then defined as the sum of the products
of the elements of any row or column with their
corresponding cofactors.

i.e. det(A) =
∑N

j=1 AmjCmj =
∑N

i=1 AikCik

for ANY row m or column k .
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Useful properties of determinants

I If we interchange 2 adjacent rows or 2 adjacent columns
of A to give B, then det(B) = −det(A)

I det(AT ) = det(A)

I det(AB) = det(BA) = det(A)× det(B)

I det(A−1) = 1/det(A)

I If B results from multiplying one row or column of A by a
scalar λ then det(B) = λ× det(A)

I For a matrix A where two or more rows (or columns) are
equal or linearly dependent, then det(A) = 0

I If B results from adding a multiple of one row to another
row, or a multiple of one column to another column, then
det(B) = det(A) (determinant unchanged).
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Example: CP3 September 2007, No. 2

A is a non-singular 3× 3 matrix and B = 2A−1. Calculate Tr(AB) and
det(A)det(B). [4]

I Tr(AB) = Tr(2AA−1) = 2Tr(I) = 6

I det(A)× det(B) = det(A)× det(2A−1)

= det(2AA−1) = det(2I) = 23 = 8
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Inverse of a matrix

For a square matrix A: AA−1 = A−1A = I

Prescription to find A−1:
1. Start from a square matrix A

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

 (2)

2. Form the matrix of cofactors of A:
C =


C11 C12 · · · C1n
C21 C22 · · · C2n
· · · · · · · · · · · ·
Cn1 Cn2 · · · Cnn

 (3)

where cofactor Cij = [minor]× [sign] = Mij × (−1)(i+j) as before.
3. Take the transpose C ⇒ CT (the adjugate matrix)

4. Divide by the determinant of A.

Then the elements of A−1 are (A−1)ik = (CT )ik/|A| = Cki/|A|

If |A| = 0, the matrix the matrix has no inverse (i.e. singular).
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Example: CP3 June 2010. No. 1

Determine whether the following matrices are orthogonal, unitary,
hermitian, or none of these (note that some may be more than one):(

0 i
−i 0

)
,

(
i 0
0 i

)
, 1

2

 1 0 −
√

3
0 1 0√
3 0 1

 [5]

I 3 definitions and 9 potential tests

I A =

(
0 i
−i 0

)
,AT =

(
0 −i
i 0

)
,A† =

(
0 i
−i 0

)
= A→ Hermitian

I A =

(
0 i
−i 0

)
,A−1 = 1

(−1)

(
0 −i
i 0

)
=

(
0 i
−i 0

)
= A† → Unitary

I A =

(
0 i
−i 0

)
A−1 6= AT → NOT orthogonal

I Similarly A =

(
i 0
0 i

)
→ Unitary, NOT Hermitian, NOT orthogonal
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CP3 June 2010. No. 1, continued

I 1
2

 1 0 −
√

3
0 1 0√
3 0 1

 , AT = 1
2

 1 0
√

3
0 1 0
−
√

3 0 1

 ,

A† = 1
2

 1 0
√

3
0 1 0
−
√

3 0 1

 6= A → NOT Hermitian

I Determinant: ( 1
2 )

3

∣∣∣∣∣∣
1 0 −

√
3

0 1 0√
3 0 1

∣∣∣∣∣∣ → |A| = 1
8 (1− 0 + 3) = 1

2

I Matrix inverse, get matrix of co-factors:

C = 1
4

 1 0 −
√

3
0 4 0√
3 0 1

 , CT = 1
4

 1 0
√

3
0 4 0
−
√

3 0 1


A−1 = CT /|A| = 1

2

 1 0
√

3
0 4 0
−
√

3 0 1

 6= A† → NOT unitary

I A−1 6= AT → NOT orthogonal
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