CP1 REVISION LECTURE 3

INTRODUCTION TO

CLASSICAL MECHANICS
Prof. N. Harnew
University of Oxford

$$
\text { TT } 2017
$$

OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS

1. Angular velocity and angular acceleration
2. The Moment of Inertia
2.1 Example : Mol of a thin rectangular plate
2.2 Parallel axis theorem
2.3 Perpendicular axis theorem
3. Lagrangian Mechanics
3.1 The Lagrangian in various coordinate systems
3.2 Example : bead on rotating hoop
4. The Hamiltonian
4.1 Example: re-visit bead on rotating hoop

1. Angular velocity and angular acceleration

- Definition of angular velocity for rotation in a circle

$$
\dot{\underline{\mathbf{r}}}=\underline{\omega} \times \underline{\mathbf{r}}
$$

- Angular acceleration:

$$
\underline{\alpha}=\underline{\underline{\dot{\omega}}}
$$

- Definition of the Moment of Inertia of the system I of particles or body rotating about a common axis of symmetry (cf. $\underline{\mathbf{p}}=m_{\underline{\mathbf{v}}}$ for a linear system)

$$
\underline{\mathbf{J}}=\mathrm{I} \underline{\omega} \quad \text { where } \quad \mathrm{I}=\sum_{i} m_{i} r_{i}^{2}
$$

- Torque associated with the rotation

$$
\underline{\tau}=\frac{d}{d t} \underline{\mathbf{J}}=\mathrm{I} \underline{\alpha}
$$

2. The Moment of Inertia Calculation of moment of inertia of rigid body

A rigid body may be considered as a collection of infinitesimal point particles whose relative distance does not change during motion.

- Mass $=\int d m$, where $d m=\rho d V$ and ρ is the volume density
- $\mathrm{I}=\left(\sum_{i}^{N} m_{i} d_{i}^{2}\right) \rightarrow \int_{V} d^{2} \rho d V$ where d is the perpendicular distance to the axis of rotation.
- This integral gives the moment of inertia about the axis of rotation.

Rotation about a principal axis

- In general $\underline{\mathbf{J}}=\widetilde{\mathrm{I}} \underline{\omega}$, where $\widetilde{\mathrm{I}}$ is the Moment of Inertia Tensor

$$
\left(\begin{array}{c}
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{I}_{x x} & \mathrm{I}_{x y} & \mathrm{I}_{x z} \\
\mathrm{I}_{y x} & \mathrm{I}_{y y} & \mathrm{I}_{y z} \\
\mathrm{I}_{z x} & \mathrm{I}_{z y} & \mathrm{I}_{z z}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

- Whenever possible, one aligns the axes of the coordinate system in such a way that the mass of the body evenly distributes around the axes: we choose axes of symmetry.
$\left(\begin{array}{l}J_{x} \\ J_{y} \\ J_{z}\end{array}\right)=\left(\begin{array}{ccc}\mathrm{I}_{x} & 0 & 0 \\ 0 & \mathrm{I}_{y} & 0 \\ 0 & 0 & \mathrm{I}_{z}\end{array}\right)\left(\begin{array}{l}\omega_{x} \\ \omega_{y} \\ \omega_{z}\end{array}\right)$
The diagonal terms are called the principal axes of the moment of inertia.
- Whenever we rotate about an axis of symmetry, for every point A there is a point B which cancels it, and

$$
\underline{\mathbf{J}} \rightarrow J_{z} \underline{\hat{\mathbf{z}}}=\mathrm{I}_{z} \omega_{z} \underline{\hat{\mathbf{z}}}
$$

and where $\underline{\mathbf{J}}$ is parallel to $\underline{\omega}$ along the $\underline{\underline{z}}$ axis

Moment of inertia \& energy of rotation

Particles rotating in circular motion about a common axis of rotation with angular velocity $\underline{\omega}$ (where $\underline{\mathbf{v}}_{i}=\underline{\omega} \times \underline{\mathbf{r}}_{i}$).

- Kinetic energy of mass m_{i} :

$$
T_{i}=\frac{1}{2} m_{i} v_{i}^{2}
$$

- Total $\mathrm{KE}=\frac{1}{2} \sum_{i}\left(m_{i} v_{i}^{2}\right)$
- $\underline{\mathbf{v}}_{i}=\underline{\omega} \times \underline{\mathbf{r}}_{i}$
$v_{i}=\omega r_{i} \sin \phi_{i}$
$\sin \phi_{i}=\frac{d_{i}}{r_{i}}$
- $T_{\text {rot }}=\frac{1}{2}\left(\sum_{i}^{N} m_{i} d_{i}^{2}\right) \omega^{2}$

$$
T_{\text {rot }}=\frac{1}{2} I \omega^{2}
$$

where I is calculated about the axis of rotation

2.1 Example : MoI of a thin rectangular plate

About the x axis

- $\mathrm{I}_{x}=\int y^{2} d m$

$$
d m=\rho d x d y ; \rho=\frac{M}{a b}
$$

- $\mathrm{I}_{x}=\int y^{2} \rho d x d y$
$=\left[\rho \frac{y^{3}}{3}\right]_{-\frac{b}{2}}^{+\frac{b}{2}}[x]_{-\frac{a}{2}}^{+\frac{a}{2}}$
$=\rho a\left[\frac{b^{3}}{24}+\frac{b^{3}}{24}\right]$
$=\rho a b\left[\frac{b^{2}}{12}\right]$
- Hence $I_{x}=\frac{M b^{2}}{12}$

2.2 Parallel axis theorem

$I_{C M}$ is the moment of inertia of body mass M about an axis passing through its centre of mass. I is the moment of inertia about a parallel axis a distance d from the first.

- $I_{C M}=\int r^{2} d m$
- $\underline{\mathbf{r}}^{\prime}=\underline{\mathbf{d}}+\underline{\mathbf{r}}$
- $r^{\prime 2}=d^{2}+2 \underline{\mathbf{d}} \cdot \underline{\mathbf{r}}+r^{2}$
- About the parallel axis :
$\mathrm{I}=\int r^{\prime 2} d m$
$=\int d^{2} d m+2 \underline{\mathbf{d}} \cdot \underbrace{\int \underline{\mathbf{r}} d m}_{=0}+\int r^{2} d m$

(definition of CM)
- Hence $I=I_{C M}+M d^{2}$

2.3 Perpendicular axis theorem

Consider a rigid object that lies entirely within a plane. The perpendicular axis theorem links I_{z} (Mol about an axis perpendicular to the plane) with $\mathrm{I}_{x}, \mathrm{I}_{y}$ (Mol about two perpendicular axes lying within the plane).

- Consider perpendicular axes x, y, z (which meet at origin O) ; the body lies in the $x y$ plane
- $I_{z}=\int d^{2} d m$
$=\int\left(x^{2}+y^{2}\right) d m$
$=\int x^{2} d m+\int y^{2} d m$
$\rightarrow \quad \mathrm{I}_{z}=\mathrm{I}_{x}+\mathrm{I}_{y}$

This is the perpendicular axis theorem.

Example : compound pendulum

Rectangular rod length a width b mass m swinging about axis O, distance ℓ from the CM, in plane of paper

- $\mathrm{I}_{x}=\frac{m b^{2}}{12}, \mathrm{I}_{y}=m \frac{m a^{2}}{12}$
- Perpendicular axis theorem :

$$
I_{z} \equiv I_{C M}=m\left(\frac{a^{2}+b^{2}}{12}\right)
$$

- Parallel axis theorem :

$$
\mathrm{I}=\mathrm{I}_{C M}+m \ell^{2}
$$

- Torque about $\mathrm{O}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}$:

$$
\begin{aligned}
& \underline{\tau}=-m g \ell \sin \theta \underline{\hat{\mathbf{k}}} \\
& \underline{\mathbf{J}}=\mathrm{I} \underline{\omega}=\mathrm{I} \dot{\theta} \underline{\hat{\mathbf{k}}}
\end{aligned}
$$

- Differentiate wrt $t: \underline{\tau}=\mathrm{I} \ddot{\theta} \underline{\hat{\mathbf{k}}}$
- Equate $\mathrm{I} \ddot{\theta}=-m g \ell \sin \theta$

Compound pendulum continued

- $\mathrm{I} \ddot{\theta}=-m g \ell \sin \theta$
where $I=m\left(\frac{a^{2}+b^{2}}{12}\right)+m \ell^{2}$
- Small angle approximation : $\ddot{\theta}+\frac{m g \ell}{\mathrm{I}} \theta=0$
- SHM with period $T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \mathrm{\ell}}}$

$$
\rightarrow \quad T=2 \pi \sqrt{\frac{a^{2}+b^{2}+12 \ell^{2}}{12 g \ell}}
$$

Example : solid ball rolling down slope

[Energy of ball] $=[$ Rotational KE in CM] $+[\mathrm{KE}$ of CM] $+[\mathrm{PE}]$

$$
E=\frac{1}{2} I \omega^{2}+\frac{1}{2} M v^{2}+M g y
$$

- Ball falls a distance h from

$$
\begin{aligned}
& \text { rest } \rightarrow \text { at } y=0: \\
& \begin{aligned}
M g h & =\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} M v^{2} \\
& =\frac{1}{2} \mathrm{I}\left(\frac{v}{R}\right)^{2}+\frac{1}{2} M v^{2}
\end{aligned}
\end{aligned}
$$

- Solid sphere: $\mathrm{I}=\frac{2}{5} M R^{2}$

- $M g h=\frac{1}{2} M v^{2}\left(\frac{2}{5}+1\right)$

$$
\rightarrow \quad v=\sqrt{\frac{10}{7} g h}
$$

Compare with a solid cylinder $\mathrm{I}=\frac{1}{2} M R^{2} \rightarrow v=\sqrt{\frac{4}{3} g h}$ The ball gets to the bottom faster !

Example : A rod receives an impulse

A rectangular rod receives an impulse from a force distance x from its centre of mass. Describe the subsequent motion.

MOTION OF THE CM ROTATION

A rod receives an impulse, continued

- Impulse $(\Delta p=F \Delta t)$ at point x from its centre of mass
- Force applied to the CM : F=ma
- Moment of inertia wrt CM :

$$
I_{C M}=\frac{1}{12} M b^{2}
$$

- Torque (couple) about $\mathrm{O}=\mathrm{I}_{C M} \ddot{\theta}$
- Hence $\mathrm{I}_{C M} \ddot{\theta}=\frac{M b^{2}}{12} \ddot{\theta}=x \times \frac{F}{2} \times 2$

Rotational motion $\rightarrow \ddot{\theta}=\frac{12 F x}{M b^{2}}$

- Acceleration at A due to rotation

$$
a_{\text {rot }}=-\frac{b}{2} \ddot{\theta}
$$

- Acceleration at A due to translation

$$
a_{\text {trans }}=\frac{F}{m}
$$

3. Lagrangian Mechanics

The Lagrangian : $L=T-U$

- In 1D : Kinetic energy $\quad T=\frac{1}{2} m \dot{x}^{2} \quad$ No dependence on x Potential energy $U=U(x)$ No dependence on \dot{x}
- The Lagrangian in 1D: $L=\frac{1}{2} m \dot{x}^{2}-U(x)$
- $\frac{\partial L}{\partial \dot{x}}=m \dot{x}$ and $\frac{\partial L}{\partial x}=-\frac{\partial U}{\partial x}$ gives force F
- Differential wrt $t: \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=m \ddot{x}$
- Hence we get the Euler-Lagrange equation for x :

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x}
$$

- Now generalize : the Lagrangian becomes a function of $2 n$ variables (n is the dimension of the configuration space).
Variables are the positions and velocities

$$
L\left(q_{1}, \cdots, q_{n}, \dot{q}_{1}, \cdots, \dot{q}_{n}\right)
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)=\frac{\partial L}{\partial q_{k}}
$$

Definitions

- Generalised coordinates: A set of parameters $q_{k}(t)$ that specifies the system configuration. q_{k} may be a geometrical parameter, x, y, z, a set of angles \cdots etc
- Degrees of Freedom : The number of independent coordinates that is sufficient to describe the configuration of the system uniquely.
- Constraints : These are imposed when its components are not permitted to move freely in 3-D.
- Conjugate (generalized) momentum : $p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}$ Following on: E-L equation then reads $\dot{p}_{k}=\frac{\partial L}{\partial q_{k}}$
- Cyclic (or ignorable) coordinate q_{k} : If the Lagrangian L does not explicitly depend on q_{k} - then in this case $\frac{\partial L}{\partial q_{k}}=0$ and $p_{k}=\frac{\partial L}{\partial \dot{q}_{k}}=$ constant

The momentum conjugate to a cyclic coordinate is a constant of motion

Example : simple pendulum

Evaluate simple pendulum using Euler-Lagrange equation

- Single variable $q_{k} \rightarrow \theta$
- $v=\ell \dot{\theta}$
- $T=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}$
- $U=-m g \ell \cos \theta$
- $L=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m g \ell \cos \theta$
- $\frac{\partial L}{\partial \dot{\theta}}=m \ell^{2} \dot{\theta} \rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m \ell^{2} \ddot{\theta}$
- $\frac{\partial L}{\partial \theta}=-m g \ell \sin \theta$
- $\mathrm{E}-\mathrm{L} \rightarrow m \ell^{2} \ddot{\theta}+m g \ell \sin \theta=0$

$$
\ddot{\theta}+\frac{g}{\ell} \sin \theta=0
$$

Pendulum on a trolley

- Pendulum's pivot can now
 move freely in x direction
- Pivot coordinates : $(x, 0)$
- Pendulum coordinates : $(x+\ell \sin \theta,-\ell \cos \theta)$ $T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\frac{d}{d t}(x+\ell \sin \theta)\right)^{2}+$ $+\frac{1}{2} m_{2}\left(\frac{d}{d t}(-\ell \cos \theta)\right)^{2}$

$$
\begin{aligned}
U= & =-m_{2} g \ell \cos \theta \\
L= & \frac{1}{2}\left(m_{1}+m_{2}\right) \dot{x}^{2}+\frac{1}{2} m_{2} \ell^{2} \dot{\theta}^{2}+ \\
& +m_{2} \ell \dot{x} \cos \theta \dot{\theta}+m_{2} g \ell \cos \theta
\end{aligned}
$$

- $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta} \rightarrow \ddot{x} \cos \theta+\ddot{\theta} \ell+g \sin \theta=0$
- $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x} \rightarrow \ddot{x}\left(m_{1}+m_{2}\right)-m_{2} \ell \dot{\theta}^{2} \sin \theta+\ddot{\theta} m_{2} \ell \cos \theta=0$
- Small angle approx and solve $\rightarrow \ddot{\theta}+\frac{\left(m_{1}+m_{2}\right)}{m_{1}} \frac{g}{\ell} \theta=0$

3.1 The Lagrangian in various coordinate systems

- Cartesian coordinates

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-U(x, y, z)
$$

Cylindrical coords

- Cylindrical coordinates
$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)-U(r, \phi, z)$
- Spherical coordinates
$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+(r \sin \theta)^{2} \dot{\phi}^{2}\right)-U(r, \theta, \phi)$

Spherical coords

3.2 Example : bead on rotating hoop

A vertical circular hoop of radius R rotates about a vertical axis at a constant angular velocity ω. A bead of mass m can slide on the hoop without friction. Describe the motion of the bead.

- Use spherical coordinates:

$$
T=\frac{1}{2} m\left(\dot{R}^{2}+R^{2} \dot{\theta}^{2}+(R \sin \theta)^{2} \dot{\phi}^{2}\right)
$$

- But $\dot{R}=0, \dot{\phi}=\omega=$ constant

$$
T=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+(R \sin \theta)^{2} \omega^{2}\right)
$$

- $U=-m g R \cos \theta$
- $L=T-U$
$L=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+(R \sin \theta)^{2} \omega^{2}\right)+m g R \cos \theta$
One single generalized coordinate : θ

Bead on rotating hoop, continued

$L=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \sin ^{2} \theta \omega^{2}\right)+m g R \cos \theta$

- E-L equation: $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta}$
- $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{d}{d t}\left(m R^{2} \dot{\theta}\right)=m R^{2} \ddot{\theta}$
$\frac{\partial L}{\partial \theta}=m R^{2} \sin \theta \cos \theta \omega^{2}-m g R \sin \theta$
$\rightarrow \ddot{\theta}=\sin \theta \cos \theta \omega^{2}-\frac{g}{R} \sin \theta$
$\rightarrow \ddot{\theta}+\left(\omega_{0}^{2}-\omega^{2} \cos \theta\right) \sin \theta=0$
where $\omega_{0}^{2}=\frac{g}{R}$

- If $\omega=0, \ddot{\theta}+\omega_{0}^{2} \sin \theta=0 \rightarrow$ SHM, back to pendulum formula

4. The Hamiltonian

- Conjugate momentum : $p_{k}=\frac{\partial L}{\partial q_{k}}$, from E-L $\dot{p}_{k}=\frac{\partial L}{\partial q_{k}}$
- Define Hamiltonian

$$
H=\sum_{k} p_{k} \dot{q}_{k}-L
$$

- Can show (see HT lectures)

$$
\frac{d H}{d t}=-\frac{\partial L}{\partial t}
$$

- If L does not depend explicitly on time, H is a constant of motion
- Take kinetic energy $T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$
- $L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-U(x, y, z)$
- $H=\sum_{k} p_{k} \dot{q}_{k}-L=m(\dot{x} \cdot \dot{x}+\dot{y} \cdot \dot{y}+\dot{z} \cdot \dot{z})-(T-U)$

$$
=2 T-(T-U)=T+U=E \quad \rightarrow \text { total energy }
$$

- If L does not depend explicitly on time $\frac{d H}{d t}=0$
\rightarrow energy is a constant of the motion

4.1 Example: re-visit bead on rotating hoop

First take the case of a free (undriven) system

- $L=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)+m g R \cos \theta$
- $H=\sum_{k} p_{k} \dot{q}_{k}-L ; p_{k}=\frac{\partial L}{\partial \dot{q}}$
- $p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m R^{2} \dot{\theta} ; p_{\phi}=m R^{2} \sin ^{2} \theta \dot{\phi}$
- $H=m R^{2} \dot{\theta}^{2}+m R^{2} \sin ^{2} \theta \dot{\phi}^{2}-L$

$$
\begin{aligned}
= & \frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-m g R \cos \theta \\
& \rightarrow H=T+U=E
\end{aligned}
$$

L does not depend explicitly on t,
H, E conserved \rightarrow Hamiltonian gives the total energy

- Note: $\frac{\partial L}{\partial \dot{\phi}}=m(R \sin \theta)^{2} \dot{\theta}$: which is angular momentum about O . ϕ is CYCLIC $\rightarrow \frac{\partial L}{\partial \phi}=0 \rightarrow$ A.M conserved.

Example continued

The system is now DRIVEN - hoop

 rotating at constant angular speed ω- $L=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \omega^{2} \sin ^{2} \theta\right)+m g R \cos \theta$
- $H=\sum_{k} p_{k} \dot{q}_{k}-L ; p_{k}=\frac{\partial L}{\partial \dot{q_{k}}}$
- $p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m R^{2} \dot{\theta}$; a single coordinate θ
- $H=m R^{2} \dot{\theta}^{2}-L \quad\left(\right.$ Note $\left.p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=0\right)$
$=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}-R^{2} \omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta$
- $E=\frac{1}{2} m\left(R^{2} \dot{\theta}^{2}+R^{2} \omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta$ Hence $E=H+m\left(R^{2} \omega^{2} \sin ^{2} \theta\right)$

$$
\rightarrow E=T+U \neq H
$$

- $\frac{d H}{d t}=-\frac{\partial L}{\partial t}$
$-H$ is a constant of the motion, E is not const.
In this case the hoop has been forced to rotate at an angular velocity ω. External energy is being supplied to the system.

