CP1 REVISION LECTURE 2

INTRODUCTION TO

CLASSICAL MECHANICS
Prof. N. Harnew
University of Oxford

$$
\text { TT } 2017
$$

OUTLINE : CP1 REVISION LECTURE 2 :
 INTRODUCTION TO CLASSICAL MECHANICS

1. Angular variables
1.1 Angular momentum and torque
2. Central forces
2.2 Central force : the total energy
3. Effective potential
4. Orbits
4.1 Example : putting a satellite into circular orbit
4.2 Example : change in orbit angular momentum
4.3 Impulse leaving angular momentum unchanged
4.4 The hyperbolic orbit

1. Angular variables

- $\underline{\hat{\mathbf{r}}}=(\underline{\mathbf{i}} \cos \theta+\mathbf{j} \sin \theta)$ is a unit vector in the direction of \underline{r}
- $\underline{\hat{\theta}}=(-\underline{\mathbf{i}} \sin \theta+\underline{\mathbf{j}} \cos \theta)$ is a unit vector perpendicular to $\underline{\underline{r}}$
- $\underline{\mathbf{r}}=r(\underline{\mathbf{i}} \cos \theta+\underline{\mathbf{j}} \sin \theta)$
- Differentiating wrt time :

$$
\underline{\mathbf{v}}=\underline{\dot{\mathbf{r}}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}}
$$

- $\underline{\mathbf{a}}=\underline{\dot{\mathbf{v}}}=\underline{\underline{\mathbf{r}}}$
- Differentiating wrt time again :

$$
\underline{\mathbf{a}}=\underline{\ddot{\mathbf{r}}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \underline{\hat{\theta}}
$$

1.1 Angular momentum and torque

- The definition of angular momentum for a single particle wrt origin O :

$$
\underline{\mathbf{J}}=\underline{\mathbf{r}} \times \underline{\mathbf{p}}
$$

- Differentiate: $\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \frac{d \mathbf{p}}{d t}+\frac{d \mathbf{r}}{d t} \times \underline{\mathbf{p}}$
- $\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}+\underline{\mathbf{v}} \times \underline{\mathbf{p}} \quad \leftarrow$ this term $=m \underline{\mathbf{v}} \times \underline{\mathbf{v}}=0$
- Define torque $\underline{\tau}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=\frac{d \mathbf{J}}{d t}$
(cf. Linear motion $\underline{\mathbf{F}}=\frac{d \mathbf{p}}{d t}$)

2. Central forces

- Central force: $\underline{\mathbf{F}}$ acts towards origin (line joining O and P) always.
- $\underline{\mathbf{F}}=f(r) \underline{\hat{\mathbf{r}}}$ only
- Examples:

Gravitational force $\quad \mathbf{F}=-\frac{G m M}{r^{2}} \underline{\hat{\mathbf{r}}}$
O
Electrostatic force $\quad \underline{\mathbf{F}}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{\underline{r}}$

- Torque about origin : $\underline{\tau}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}$
- For a central force, $\underline{\tau}=\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=0$

Hence angular momentum is a constant of the motion

- $\underline{\mathbf{J}}=\left(m r^{2} \dot{\theta}\right) \underline{\hat{\mathbf{n}}}=$ constant

Motion under a central force

- $\underline{\mathbf{J}}=m \underline{\mathbf{r}} \times \underline{\mathbf{v}}$
- Angular momentum is always perpendicular to \underline{r} and \underline{v}
- $\underline{\mathbf{J}}$ is a constant vector ; $\underline{\mathbf{J}} \cdot \underline{\mathbf{r}}=0 ; \underline{\mathbf{J}} \cdot \underline{\mathbf{v}}=0$

Motion under a central force lies in a plane

Sweeping out equal area in equal time

- Central force example : planetary motion : $F_{r}=\frac{G M m}{r^{2}}$
- Angular momentum is conserved
$\rightarrow|\underline{\mathbf{J}}|=m r^{2} \dot{\theta}=$ constant

- $d A \approx \frac{1}{2} r^{2} d \theta$
- $\frac{d A}{d t}=\frac{1}{2} r^{2} \dot{\theta}$
$\frac{d A}{d t}=\frac{J}{2 m}=$ constant $\quad\left(\right.$ Kepler $2^{\text {nd }}$ Law)
Orbit sweeps out equal area in equal time

2.2 Central force : the total energy

- Total energy = kinetic + potential :
$E=T+U(r)=\frac{1}{2} m v^{2}+U(r)=$ constant
- $\underline{\mathbf{v}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}}$
$\rightarrow|\underline{\mathbf{v}}|^{2}=v_{r}^{2}+v_{\theta}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2} \quad($ since $\underline{\hat{\hat{r}}} \cdot \underline{\hat{\theta}}=0)$
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}+U(r)$
- No external torque: angular momentum is conserved $\rightarrow|\underline{\mathbf{J}}|=m r^{2} \dot{\theta}=$ constant

$$
E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)
$$

The potential term (inverse square interaction)

- $\underline{\mathbf{F}}=-\frac{A}{r^{2}} \hat{\underline{\hat{}}} \rightarrow f(r)=-\frac{A}{r^{2}}$
- $U(r)=-\int_{r_{\text {ref }}}^{r} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}$

Usual to define $U(r)=0$ at $r_{\text {ref }}=\infty$
$\rightarrow U(r)=-\frac{A}{r}$

Newton law of gravitation : $\underline{\mathbf{F}}=-\frac{G M m}{r^{2}} \underline{\hat{\mathbf{r}}} \rightarrow U(r)=-\frac{G M m}{r}$

Example

A projectile is fired from the earth's surface with speed v at an angle α to the radius vector at the point of launch. Calculate the projectile's subsequent maximum distance from the earth's surface. Assume that the earth is stationary and its radius is a.

Example : solution

- $U(r)=-\frac{G M m}{r}$
- $|\underline{\mathbf{J}}|=m|\underline{\mathbf{r}} \times \underline{\mathbf{v}}|=m a v \sin \alpha$
- Energy equation : $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)$
$\rightarrow E=\frac{1}{2} m \dot{r}^{2}+\frac{m a^{2} v^{2} \sin ^{2} \alpha}{2 r^{2}}-\frac{G M m}{r}$
- At $r=a: E=\frac{1}{2} m v^{2}-\frac{G M m}{a}$. At maximum height : $\dot{r}=0$

$$
\begin{align*}
& \rightarrow \frac{1}{2} m v^{2}-\frac{G M m}{a}=\frac{m a^{2} v^{2} \sin ^{2} \alpha}{2 r_{\max }^{2}}-\frac{G M m}{r_{\max }} \tag{1}\\
& \rightarrow\left(v^{2}-\frac{2 G M}{a}\right) r_{\max }^{2}+2 G M r_{\max }-a^{2} v^{2} \sin ^{2} \alpha=0
\end{align*}
$$

- Solve and take the positive root
- Note from Equ.(1) : When $\dot{r} \rightarrow 0$ as $r_{\max } \rightarrow \infty$, the rocket just escapes the earth's gravitational field i.e. $\frac{1}{2} m v^{2}-\frac{G M m}{a} \rightarrow 0, v_{\text {esc }}=\sqrt{\frac{2 G M}{a}}$ (independent of α)

3. Effective potential

- Energy equation: $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)$
- Define effective potential : $U_{\text {eff }}(r)=\frac{J^{2}}{2 m r^{2}}+U(r)$
\rightarrow then $E=\frac{1}{2} m \dot{r}^{2}+U_{\text {eff }}(r)$
- Note this has the same form as a 1-D energy expression : $\rightarrow E=\frac{1}{2} m \dot{x}^{2}+U(x)$ and can treat like a 1D problem
- Allows to predict important features of motion without solving the radial equation
$\rightarrow \frac{1}{2} m \dot{r}^{2}=E-U_{\text {eff }}(r) \leftarrow$ LHS is always positive
$\rightarrow U_{\text {eff }}(r)<E$
The only locations where the particle is allowed to go are those with $U_{\text {eff }}(r)<E$

$U_{\text {eff }}(r)$ for inverse square law

- $U_{\text {eff }}(r)=\frac{J^{2}}{2 m r^{2}}-\frac{G m M}{r}$
- $U_{\text {eff }}(r)<E_{\text {tot }}$ for all r

Three cases :

- $E_{\text {tot }}<0$: Bound (closed) orbit with $r_{1}<r<r_{2}$
- Etot has minimum energy at $r=r_{0}$: $\frac{d U_{\text {eft }}}{d r}=0$, circular motion with $\dot{r}=0$
- $E_{\text {tot }}>0$: Unbound (open) orbit with

$$
r>r_{3}
$$

4. Orbits

$$
r(\theta)=\frac{r_{0}}{1+e \cos \theta}: \text { the orbit equation }
$$

(Note that the derivation of this is off syllabus.)
Total energy in ellipse parameters

$$
E=\frac{\alpha}{2 r_{0}}\left(e^{2}-1\right)
$$

Also $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$

- $\boldsymbol{e}=0, r=r_{0}, E=-\frac{\alpha}{2 r_{0}}$
\rightarrow motion in a circle
- If $0<e<1, E<0$
\rightarrow motion is an ellipse
- If $e=1, E=0$

$$
r(\theta)=\frac{r_{0}}{1+\cos \theta}
$$

\rightarrow motion is a parabola

- If $e>1, E>0$
\rightarrow motion is a hyperbola

4.1 Example : putting a satellite into geostationary orbit

i) Calculate the orbital velocity in a geostationary orbit and show that its radius is approximately $40,000 \mathrm{~km}$.

- Geostationary orbit : the circular orbit around the Earth above the equator which has a period of 24 hours
- Equate forces : $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \rightarrow v=\sqrt{\frac{G M}{r}}$
- Period $T=\frac{2 \pi r}{v}=\frac{2 \pi r^{3 / 2}}{(G M)^{1 / 2}}=86,400 \mathrm{~s}$
- Radius $r=\left(\frac{(G M)^{1 / 2} T}{2 \pi}\right)^{2 / 3}=4.2 \times 10^{7} \mathrm{~m}$
- $v_{G}=3080 \mathrm{~ms}^{-1}$
ii) A satellite is to be placed in to a geostationary orbit from an elliptical orbit with perigee at a geocentric radius of $r_{B}=$ $8,000 \mathrm{~km}$ and apogee at $r_{A}=42,000 \mathrm{~km}$. When it is at apogee, a brief firing of its rocket motor places it into the circular orbit. Calculate the change in velocity the motor needs to provide.

Example continued

- Conservation of angular momentum, points A \& B

$$
v_{A} r_{A}=v_{B} r_{B}
$$

- Energy at $A=$ energy at B

$$
\frac{1}{2} m v_{A}^{2}-\frac{G M m}{r_{A}}=\frac{1}{2} m v_{B}^{2}-\frac{G M m}{r_{B}}
$$

- Solve for v_{A}

$$
\rightarrow v_{A}^{2}=\frac{2 G M\left(1 / r_{B}-1 / r_{A}\right)}{\left(r_{A}^{2} / r_{B}^{2}-1\right)}
$$

- To place in geostationary orbit, need to boost rockets by
$\Delta v=v_{G}-v_{A}$
- Putting in numbers
$\rightarrow \Delta v=1280 \mathrm{~ms}^{-1}$

4.2 Example : change in orbit angular momentum

- A spacecraft is in circular motion about a planet
- The spacecraft is given an impulse which leaves the magnitude of velocity v_{0} unchanged but the spacecraft now makes an angle θ wrt direction of motion
- Question: what is the apogee and perigee of the subsequent elliptical orbit?

- Conservation of angular momentum, points A \& B $J=m v_{0} R \sin \left(\frac{\pi}{2}-\theta\right)=m v_{B} r_{B}$
- Energy at $A=$ energy at B $\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{R}=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r_{B}^{2}}-\frac{\alpha}{r_{B}}$ where $\alpha=$ GMm

Initial circular orbit

Example continued

- At point $B, \dot{r}=0$, energy conservation becomes

$$
\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{R}=\frac{m^{2} v_{0}^{2} R^{2} \cos ^{2} \theta}{2 m r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

- Equate forces for circular motion to get v_{0} :

$$
\frac{m v_{0}^{2}}{R}=\frac{\alpha}{R^{2}} \quad \rightarrow v_{0}^{2}=\frac{\alpha}{m R}
$$

- Sub for v_{0}^{2} : energy conservation becomes

$$
\frac{\alpha}{2 R}-\frac{\alpha}{R}=\frac{\alpha R \cos ^{2} \theta}{2 r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

- Solve for $r_{B} \rightarrow r_{B}=R \pm \sqrt{R^{2}-R^{2} \cos \theta}$

$$
r_{B}=R(1 \pm \sin \theta)
$$

(+ve solution is apogee, -ve is perigee)

4.3 Impulse leaving angular momentum unchanged

- Example: A satellite in circular orbit has been given an impulse leaving J unchanged. The kinetic energy is changed by $T=\beta T_{0}$. Describe the subsequent motion.
- If J is not changed, impulse must be perpendicular to the direction of motion as shown with angular part of the velocity unchanged.
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- Circular orbit:

$$
\begin{align*}
& \rightarrow \dot{r}=0, J=m r_{0} v_{0} \tag{1}\\
& \rightarrow E_{\text {initial }}=\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{r_{0}}
\end{align*}
$$

- Equate forces :

$$
\begin{align*}
& \rightarrow \frac{m v_{0}^{2}}{r_{0}}=\frac{\alpha}{r_{0}^{2}} \\
& \rightarrow v_{0}^{2}=\frac{\alpha}{m r_{0}} \tag{2}
\end{align*}
$$

Example continued

- New orbit (elliptical): $\quad E_{n e w}=\frac{1}{2} \beta m v_{0}^{2}-\frac{\alpha}{r_{0}}$
- Equate energies: subsequent motion described by:

$$
\begin{equation*}
\frac{1}{2} \beta m v_{0}^{2}-\frac{\alpha}{r_{0}}=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r} \tag{3}
\end{equation*}
$$

- Now solve for $r_{\text {min }}, r_{\text {max }}$. Set $\dot{r}=0$ for apogee and perigee.
- From (1), (2), (3)
$\rightarrow(\beta-2) r^{2}+2 r_{0} r-r_{0}^{2}=0$
- $r_{\text {min, max }}=\frac{-r_{0} \pm \sqrt{r_{0}^{2}+(\beta-2) r_{0}^{2}}}{(\beta-2)}$

4.4 The hyperbolic orbit

- Orbit equation : $r(\theta)=\frac{r_{0}}{1+e \cos \theta}$
- Ellipse : e<1 $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
- Hyperbola:

$$
e>1 \quad\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=1
$$

Hyperbolic orbit : the distance of closest approach

Example : a comet deviated by the gravitational attraction of a planet. Velocity $\underline{\mathbf{v}}=\underline{\mathbf{v}}_{\mathbf{0}}$ when $\underline{\mathbf{r}} \rightarrow \infty$.

- Angular momentum $\underline{\mathbf{J}}=m \underline{\mathbf{r}} \times \underline{\mathbf{v}}$
$\rightarrow|\underline{\mathbf{J}}|=m v r \sin \gamma=m v_{0} h \quad$ (seen as $r \rightarrow \infty$)
\rightarrow Total energy $E=\frac{1}{2} m v_{0}^{2} \quad$ (also seen as $r \rightarrow \infty$)

Distance of closest approach continued

- $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$, where $\alpha=G m M$
- At distance of closest approach $r=r_{\text {min }} \rightarrow \dot{r}=0$
- $E=\frac{J^{2}}{2 m r_{\text {min }}^{2}}-\frac{\alpha}{r_{\text {min }}}$
$\rightarrow r_{\text {min }}^{2}+\frac{\alpha}{E} r_{\text {min }}-\frac{J^{2}}{2 m E}=0$
- Solution:
- $r_{\text {min }}=-\left(\frac{\alpha}{2 E}\right)\left[1-\left(1+\frac{2 E J^{2}}{m \alpha^{2}}\right)^{\frac{1}{2}}\right] \quad\left(J^{2}=\left(m v_{0} h\right)^{2} ; E=\frac{1}{2} m v_{0}^{2}\right)$
- Velocity v^{\prime} at distance of closest approach: line to trajectory is a right angle.

$$
\rightarrow J=m v^{\prime} r_{\min }=m v_{0} h \quad \rightarrow \quad v^{\prime}=\frac{v_{0} h}{r_{\text {min }}}
$$

The angle of deflection, ϕ

Impulse method

- Directly from the diagram : $\Delta v_{x}=2 v_{0} \cos \theta_{\infty}$
- By symmetry, integrated change in $v_{y}=0: \Delta v_{y}=0$
- Change in $\Delta p_{x}: m \Delta v_{x}=\int_{-\infty}^{+\infty} F_{x} d t=\int_{-\infty}^{+\infty} F_{x}\left(\frac{m r^{2} \dot{\theta}}{J}\right) d t$ $\rightarrow m \Delta v_{x}=\left(\frac{m}{\mathrm{~J}}\right) \int_{-\theta_{\infty}}^{+\theta_{\infty}} F_{X} r^{2} d \theta$
- But $\underline{\mathbf{F}}=-\left(\frac{\alpha}{r^{2}}\right) \underline{\hat{\mathbf{r}}} \rightarrow F_{X}=-\frac{\alpha}{r^{2}} \cos \theta$
$\rightarrow m \Delta v_{x}=-2\left(\frac{m_{\alpha}}{J}\right) \int_{0}^{\theta_{\infty}} \cos \theta d \theta$
$\rightarrow \Delta v_{x}=-\left(\frac{2 \alpha}{J}\right) \sin \theta_{\infty}$
- From (1) \& (2) $\rightarrow-\left(\frac{2 \alpha}{J}\right) \sin \theta_{\infty}=2 v_{0} \cos \theta_{\infty}$
- $\tan \theta_{\infty}=-\frac{J v_{0}}{\alpha} \rightarrow \theta_{\infty}+\beta=\pi ; \phi+2 \beta=\pi$
- $\theta_{\infty}=\frac{\phi}{2}+\frac{\pi}{2} ; \tan \theta_{\infty}=\tan \left(\frac{\phi}{2}+\frac{\pi}{2}\right)=-\cot \frac{\phi}{2}$

$$
\cot \frac{\phi}{2}=\frac{J v_{0}}{\alpha}=\frac{m h v_{0}^{2}}{\alpha}=\frac{h v_{0}^{2}}{G M}
$$

