CP1 REVISION LECTURE 2

INTRODUCTION TO CLASSICAL MECHANICS

Prof. N. Harnew University of Oxford TT 2017

OUTLINE : CP1 REVISION LECTURE 2 : INTRODUCTION TO CLASSICAL MECHANICS

1. Angular variables

1.1 Angular momentum and torque

2. Central forces

2.2 Central force : the total energy

3. Effective potential

4. Orbits

- 4.1 Example : putting a satellite into circular orbit
- 4.2 Example : change in orbit angular momentum
- 4.3 Impulse leaving angular momentum unchanged
- 4.4 The hyperbolic orbit

1. Angular variables

- $\underline{\hat{\mathbf{r}}} = (\underline{\mathbf{i}} \cos \theta + \underline{\mathbf{j}} \sin \theta)$ is a unit vector in the direction of $\underline{\mathbf{r}}$
- $\hat{\underline{\theta}} = (-\underline{\mathbf{i}} \sin \theta + \underline{\mathbf{j}} \cos \theta)$ is a unit vector perpendicular to $\underline{\mathbf{r}}$
- $\mathbf{\underline{r}} = r\left(\mathbf{\underline{i}}\,\cos\theta + \mathbf{\underline{j}}\,\sin\theta\right)$
- ► Differentiating wrt time : $\mathbf{v} = \dot{\mathbf{r}} = \dot{r}\,\hat{\mathbf{r}} + r\,\dot{\theta}\,\hat{\theta}$

 $\bullet \underline{\mathbf{a}} = \underline{\dot{\mathbf{v}}} = \underline{\ddot{\mathbf{r}}}$

Differentiating wrt time again :

 $\underline{\mathbf{a}} = \underline{\ddot{\mathbf{r}}} = (\ddot{r} - r\dot{\theta}^2)\,\underline{\hat{\mathbf{r}}} + (2\dot{r}\,\dot{\theta} + r\,\ddot{\theta})\,\underline{\hat{\theta}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

1.1 Angular momentum and torque

The definition of angular momentum for a single particle wrt origin O:

 $\underline{\mathbf{J}} = \underline{\mathbf{r}} \times \underline{\mathbf{p}}$

- Differentiate: $\frac{d\mathbf{J}}{dt} = \mathbf{\underline{r}} \times \frac{d\mathbf{\underline{p}}}{dt} + \frac{d\mathbf{\underline{r}}}{dt} \times \mathbf{\underline{p}}$
- $\quad \bullet \ \frac{d\mathbf{J}}{dt} = \mathbf{\underline{r}} \times \mathbf{\underline{F}} + \mathbf{\underline{v}} \times \mathbf{\underline{p}} \quad \leftarrow \text{this term} = m\mathbf{\underline{v}} \times \mathbf{\underline{v}} = \mathbf{0}$
- ► Define *torque* $\underline{\tau} = \underline{\mathbf{r}} \times \underline{\mathbf{F}} = \frac{d\mathbf{J}}{dt}$ (cf. Linear motion $\underline{\mathbf{F}} = \frac{d\mathbf{p}}{dt}$)

2. Central forces

- Central force: <u>F</u> acts towards origin (line joining O and P) always.
- $\underline{\mathbf{F}} = f(r) \, \hat{\mathbf{r}}$ only
- ► Examples: Gravitational force $\underline{\mathbf{F}} = -\frac{GmM}{r^2}\hat{\underline{\mathbf{r}}}$ Electrostatic force $\underline{\mathbf{F}} = \frac{q_1q_2}{4\pi\epsilon_0 r^2}\hat{\underline{\mathbf{r}}}$
- Torque about origin : $\underline{\tau} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}$
- For a central force, $\underline{\tau} = \frac{d\mathbf{J}}{dt} = \mathbf{\underline{r}} \times \mathbf{\underline{F}} = \mathbf{0}$

Hence angular momentum is a constant of the motion

•
$$\underline{\mathbf{J}} = (mr^2 \dot{\theta}) \, \underline{\hat{\mathbf{n}}} = \text{constant}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

Motion under a central force

- $\underline{\mathbf{J}} = m \underline{\mathbf{r}} \times \underline{\mathbf{v}}$
- \blacktriangleright Angular momentum is always perpendicular to $\underline{\mathbf{r}}$ and $\underline{\mathbf{v}}$
- \underline{J} is a constant vector ; $\underline{J} \cdot \underline{r} = 0$; $\underline{J} \cdot \underline{v} = 0$

Motion under a central force lies in a plane

Sweeping out equal area in equal time

- Central force example : planetary motion : $F_r = \frac{GMm}{r^2}$
- Angular momentum is conserved

$$\rightarrow |\mathbf{J}| = mr^2 \dot{\theta} = \text{constant}$$

Orbit sweeps out equal area in equal time

◆□ > → 御 > → 注 > → 注 > →

-2

2.2 Central force : the total energy

- Total energy = kinetic + potential :
- $E = T + U(r) = \frac{1}{2}mv^{2} + U(r) = \text{constant}$ $\mathbf{v} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\theta}$ $\rightarrow |\mathbf{v}|^{2} = v_{r}^{2} + v_{\theta}^{2} = \dot{r}^{2} + r^{2}\dot{\theta}^{2} \quad (\text{since } \hat{\mathbf{r}} \cdot \hat{\theta} = 0)$ $\mathbf{E} = \frac{1}{2}m\dot{r}^{2} + \frac{1}{2}mr^{2}\dot{\theta}^{2} + U(r)$
- ► No external torque: angular momentum is conserved $\rightarrow |\underline{\mathbf{J}}| = mr^2 \dot{\theta} = \text{constant}$

$$E=\frac{1}{2}m\dot{r}^2+\frac{J^2}{2mr^2}+U(r)$$

The potential term (inverse square interaction)

•
$$\underline{\mathbf{F}} = -\frac{A}{r^2} \, \underline{\mathbf{\hat{r}}} \rightarrow f(r) = -\frac{A}{r^2}$$

• $U(r) = -\int_{r_{ref}}^{r} \underline{\mathbf{F}} \cdot d\underline{\mathbf{r}}$
Usual to define $U(r) = 0$ at
 $r_{ref} = \infty$
 $\rightarrow U(r) = -\frac{A}{r}$

Newton law of gravitation : $\underline{\mathbf{F}} = -\frac{GMm}{r^2} \hat{\mathbf{r}} \rightarrow U(r) = -\frac{GMm}{r}$

Example

A projectile is fired from the earth's surface with speed v at an angle α to the radius vector at the point of launch. Calculate the projectile's subsequent maximum distance from the earth's surface. Assume that the earth is stationary and its radius is *a*.

Example : solution

►
$$U(r) = -\frac{GMm}{r}$$

► $|\underline{\mathbf{J}}| = m|\underline{\mathbf{r}} \times \underline{\mathbf{v}}| = mav \sin \alpha$
► Energy equation : $E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} + U(r)$
 $\rightarrow E = \frac{1}{2}m\dot{r}^2 + \frac{ma^2v^2\sin^2\alpha}{2r^2} - \frac{GMm}{r}$
► At $r = a$: $E = \frac{1}{2}mv^2 - \frac{GMm}{a}$. At maximum height : $\dot{r} = 0$
 $\rightarrow \frac{1}{2}mv^2 - \frac{GMm}{a} = \frac{ma^2v^2\sin^2\alpha}{2r_{max}^2} - \frac{GMm}{r_{max}}$ (1)
 $\rightarrow \left(v^2 - \frac{2GM}{a}\right)r_{max}^2 + 2GMr_{max} - a^2v^2\sin^2\alpha = 0$

- Solve and take the positive root
- ▶ Note from Equ.(1) : When $\dot{r} \rightarrow 0$ as $r_{max} \rightarrow \infty$, the rocket *just* escapes the earth's gravitational field

i.e.
$$\frac{1}{2}mv^2 - \frac{GMm}{a} \rightarrow 0$$
, $v_{esc} = \sqrt{\frac{2GM}{a}}$ (independent of α)

3. Effective potential

- Energy equation : $E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} + U(r)$
- Define effective potential : $U_{eff}(r) = \frac{J^2}{2mr^2} + U(r)$

$$\rightarrow$$
 then $E = \frac{1}{2}m\dot{r}^2 + U_{eff}(r)$

- ► Note this has the same form as a 1-D energy expression : $\rightarrow E = \frac{1}{2}m\dot{x}^2 + U(x)$ and can treat like a 1D problem
- Allows to predict important features of motion without solving the radial equation
 - $ightarrow rac{1}{2}m\dot{r}^2 = E U_{eff}(r) \ \leftarrow \ \text{LHS} \ \text{is always positive}$
 - $\rightarrow U_{eff}(r) < E$

The only locations where the particle is allowed to go are those with $U_{eff}(r) < E$

$U_{eff}(r)$ for inverse square law

• $U_{eff}(r) = \frac{J^2}{2mr^2} - \frac{GmM}{r}$ • $U_{eff}(r) < E_{tot}$ for all r

Three cases :

- ► *E_{tot}* < 0 : Bound (closed) orbit with *r*₁ < *r* < *r*₂
- ► E_{tot} has minimum energy at $r = r_0$: $\frac{dU_{eff}}{dr} = 0$, circular motion with $\dot{r} = 0$
- $E_{tot} > 0$: Unbound (open) orbit with $r > r_3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

4. Orbits

 $r(\theta) = \frac{r_0}{1+e\cos\theta}$: the orbit equation (Note that the derivation of this is off syllabus.) Total energy in ellipse parameters $E = \frac{\alpha}{2p} (e^2 - 1)$

Also
$$E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} - \frac{\alpha}{r}$$

•
$$e = 0, r = r_0, E = -\frac{\alpha}{2r_0}$$

 \rightarrow motion in a circle

 \rightarrow motion is an ellipse

► If
$$e = 1$$
, $E = 0$
 $r(\theta) = \frac{r_0}{1 + \cos \theta}$
 \rightarrow motion is a parabola

▶ If *e* > 1 , *E* > 0

14

 \rightarrow motion is a hyperbola

4.1 Example : putting a satellite into geostationary orbit

i) Calculate the orbital velocity in a geostationary orbit and show that its radius is approximately 40,000 km.

- Geostationary orbit : the circular orbit around the Earth above the equator which has a period of 24 hours
- Equate forces : $\frac{GMm}{r^2} = \frac{mv^2}{r} \rightarrow v = \sqrt{\frac{GM}{r}}$
- Period $T = \frac{2\pi r}{v} = \frac{2\pi r^{3/2}}{(GM)^{1/2}} = 86,400 \text{ s}$

• Radius
$$r = \left(\frac{(GM)^{1/2}T}{2\pi}\right)^{2/3} = 4.2 \times 10^7 \text{ m}$$

 $V_G = 3080 \text{ ms}^{-1}$

ii) A satellite is to be placed in to a geostationary orbit from an elliptical orbit with perigee at a geocentric radius of $r_{\rm B} =$ 8,000 km and apogee at $r_A = 42,000$ km. When it is at apogee, a brief firing of its rocket motor places it into the circular orbit. Calculate the change in velocity the motor needs to provide. 《曰》 《聞》 《臣》 《臣》 三臣

Example continued

 Conservation of angular momentum, points A & B

 $v_A r_A = v_B r_B$

- Energy at A = energy at B $\frac{1}{2}mv_A^2 - \frac{GMm}{r_A} = \frac{1}{2}mv_B^2 - \frac{GMm}{r_B}$
- Solve for v_A

$$ightarrow V_{A}^{2} = rac{2GM(1/r_{B}-1/r_{A})}{(r_{A}^{2}/r_{B}^{2}-1)}$$

 To place in geostationary orbit, need to boost rockets by

$$\Delta v = v_G - v_A$$

• Putting in numbers $\rightarrow \Delta v = 1280 \text{ ms}^{-1}$

4.2 Example : change in orbit angular momentum

- A spacecraft is in circular motion about a planet
- The spacecraft is given an impulse which leaves the magnitude of velocity v₀ unchanged but the spacecraft now makes an angle θ wrt direction of motion
- Question: what is the apogee and perigee of the subsequent elliptical orbit?

Initial circular orbit

 Conservation of angular momentum, points A & B

$$J = mv_0 R \sin(\frac{\pi}{2} - \theta) = mv_B r_B$$

$$\frac{1}{2}mv_0^2 - \frac{\alpha}{R} = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr_B^2} - \frac{\alpha}{r_B}$$

where $\alpha = GMm$

Example continued

• At point *B*, $\dot{r} = 0$, energy conservation becomes

$$\frac{1}{2}mv_0^2 - \frac{\alpha}{R} = \frac{m^2v_0^2R^2\cos^2\theta}{2mr_B^2} - \frac{\alpha}{r_B}$$

Equate forces for circular motion to get v₀:

$$rac{mv_0^2}{R} = rac{lpha}{R^2} \ o V_0^2 = rac{lpha}{mR}$$

Sub for v₀² : energy conservation becomes

$$\frac{lpha}{2R} - \frac{lpha}{R} = \frac{lpha R \cos^2 heta}{2r_B^2} - \frac{lpha}{r_B}$$

► Solve for $r_B \rightarrow r_B = R \pm \sqrt{R^2 - R^2 \cos \theta}$ $r_B = R(1 \pm \sin \theta)$

(+ve solution is apogee, -ve is perigee)

4.3 Impulse leaving angular momentum unchanged

- Example: A satellite in circular orbit has been given an impulse leaving *J* unchanged. The kinetic energy is changed by *T* = β*T*₀. Describe the subsequent motion.
- If J is not changed, impulse must be perpendicular to the direction of motion as shown with angular part of the velocity unchanged.

$$\bullet E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} - \frac{\alpha}{r}$$

Circular orbit:

$$ightarrow \dot{r} = 0 \;,\; J = mr_0 v_0 \quad (1)$$

 $ightarrow E_{initial} = rac{1}{2}mv_0^2 - rac{lpha}{r_0}$

Equate forces :

Example continued

- New orbit (elliptical): $E_{new} = \frac{1}{2}\beta m v_0^2 \frac{\alpha}{r_0}$
- Equate energies: subsequent motion described by:

$$\frac{1}{2}\beta m v_0^2 - \frac{\alpha}{r_0} = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} - \frac{\alpha}{r}$$
(3)

Now solve for r_{min}, r_{max}. Set r = 0 for apogee and perigee.

► From (1), (2), (3)
→
$$(\beta - 2) r^2 + 2r_0 r - r_0^2 = 0$$

► $r_{min,max} = \frac{-r_0 \pm \sqrt{r_0^2 + (\beta - 2) r_0^2}}{(\beta - 2)}$

- Orbit equation : $r(\theta) = \frac{r_0}{1 + e \cos \theta}$
- Ellipse : e < 1 $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$
- Hyperbola : e > 1 $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ・ヨー のへで

Hyperbolic orbit : the distance of closest approach

Example : a comet deviated by the gravitational attraction of a planet. Velocity $\underline{v} = \underline{v}_0$ when $\underline{r} \to \infty$.

◆母▶ ◆臣▶ ◆臣▶ ○臣 ○ のへの

Distance of closest approach continued

•
$$E = \frac{1}{2}m\dot{r}^2 + \frac{J^2}{2mr^2} - \frac{\alpha}{r}$$
 , where $\alpha = GmM$

• At distance of closest approach $r = r_{min} \rightarrow \dot{r} = 0$

$$E = \frac{J^2}{2mr_{min}^2} - \frac{\alpha}{r_{min}}$$
$$\rightarrow r_{min}^2 + \frac{\alpha}{E}r_{min} - \frac{J^2}{2mE} = 0$$

Solution:

•
$$r_{min} = -\left(\frac{\alpha}{2E}\right) \left[1 - \left(1 + \frac{2EJ^2}{m\alpha^2}\right)^{\frac{1}{2}}\right] \quad (J^2 = (mv_0h)^2; \ E = \frac{1}{2} \ mv_0^2)$$

Velocity v' at distance of closest approach: line to trajectory is a right angle.

$$ightarrow J = m {m v}' {m r}_{min} = m {m v}_0 {m h} \;\;
ightarrow \;\; {m v}' = rac{{m v}_0 {m h}}{{m r}_{min}}$$

The angle of deflection, ϕ

Impulse method

- Directly from the diagram : $\Delta v_x = 2v_0 \cos \theta_{\infty}$ (1)
- By symmetry, integrated change in $v_y = 0$: $\Delta v_y = 0$
- Change in Δp_x : $m\Delta v_x = \int_{-\infty}^{+\infty} F_x dt = \int_{-\infty}^{+\infty} F_x (\underbrace{\frac{mr^2\dot{\theta}}{J}}_{J}) dt$ $\Rightarrow m\Delta v_x = (\underbrace{m}_{J}) \int_{-\infty}^{+\theta_{\infty}} F_x r^2 d\theta$

• But
$$\underline{\mathbf{F}} = -(\frac{\alpha}{r^2})\hat{\mathbf{r}} \rightarrow F_x = -\frac{\alpha}{r^2}\cos\theta$$

$$\rightarrow \quad m\Delta v_x = -2(\frac{m\alpha}{J})\int_0^{\theta\infty}\cos\theta d\theta$$

$$\rightarrow \Delta v_x = -(\frac{2\alpha}{J})\sin\theta_{\infty}$$
 (2)

From (1) & (2) $\rightarrow -(\frac{2\alpha}{J})\sin\theta_{\infty} = 2v_0\cos\theta_{\infty}$

►
$$\tan \theta_{\infty} = -\frac{Jv_0}{\alpha} \quad \rightarrow \ \theta_{\infty} + \beta = \pi \ ; \ \phi + 2\beta = \pi$$

•
$$\theta_{\infty} = \frac{\phi}{2} + \frac{\pi}{2}$$
; $\tan \theta_{\infty} = \tan(\frac{\phi}{2} + \frac{\pi}{2}) = -\cot\frac{\phi}{2}$

$$\cot \frac{\phi}{2} = \frac{J v_0}{\alpha} = \frac{mhv_0^2}{\alpha} = \frac{hv_0^2}{GM}$$