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1. Angular variables
I r̂ = (i cos θ + j sin θ) is a unit

vector in the direction of r
I θ̂ = (−i sin θ + j cos θ) is a unit

vector perpendicular to r

I r = r (i cos θ + j sin θ)

I Differentiating wrt time :
v = ṙ = ṙ r̂ + r θ̇ θ̂

I a = v̇ = r̈

I Differentiating wrt time again :
a = r̈ = (r̈ − r θ̇2) r̂ + (2ṙ θ̇ + r θ̈) θ̂
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1.1 Angular momentum and torque

I The definition of angular momentum for
a single particle wrt origin O:

J = r× p

I Differentiate: dJ
dt = r× dp

dt + dr
dt × p

I
dJ
dt = r× F + v × p ← this term= mv × v = 0

I Define torque τ = r× F = dJ
dt

(cf. Linear motion F =
dp
dt )
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2. Central forces

I Central force: F acts towards
origin (line joining O and P)
always.

I F = f (r) r̂ only

I Examples:

Gravitational force F = −GmM
r2 r̂

Electrostatic force F = q1q2
4πε0r2 r̂

I Torque about origin : τ = r× F

I For a central force, τ = dJ
dt = r× F = 0

Hence angular momentum is a constant of the motion

I J = (mr2 θ̇) n̂ = constant
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Motion under a central force

I J = m r× v

I Angular momentum is always perpendicular to r and v

I J is a constant vector ; J · r = 0 ; J · v = 0

Motion under a central force lies in a plane
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Sweeping out equal area in equal time
I Central force example : planetary motion : Fr = GMm

r2

I Angular momentum is conserved
→ |J| = mr2 θ̇ = constant

I dA ≈ 1
2 r 2 dθ

I dA
dt = 1

2 r 2 θ̇
dA
dt = J

2m = constant (Kepler 2nd Law)

Orbit sweeps out equal area in equal time
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2.2 Central force : the total energy

I Total energy = kinetic + potential :
E = T + U(r) = 1

2mv2 + U(r) = constant

I v = ṙ r̂+ r θ̇θ̂
→ |v|2 = v2

r + v2
θ = ṙ 2 + r 2θ̇2 (since r̂ · θ̂ = 0)

I E = 1
2mṙ 2 + 1

2mr 2θ̇2 + U(r)
I No external torque: angular momentum is conserved
→ |J| = mr 2 θ̇ = constant

E = 1
2mṙ2 + J2

2mr2 + U(r)
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The potential term (inverse square interaction)

I F = − A
r2 r̂ → f (r) = − A

r2

I U(r) = −
∫ r

rref
F · dr

Usual to define U(r) = 0 at
rref =∞
→ U(r) = −A

r

Newton law of gravitation : F = −GMm
r2 r̂ → U(r) = −GMm

r
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Example

A projectile is fired from the earth’s surface with speed v at an angle
α to the radius vector at the point of launch. Calculate the projectile’s
subsequent maximum distance from the earth’s surface. Assume that
the earth is stationary and its radius is a.
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Example : solution

I U(r) = −GMm
r

I |J| = m|r× v| = mav sinα

I Energy equation : E = 1
2mṙ2 + J2

2mr2 + U(r)

→ E = 1
2mṙ2 + ma2v2 sin2 α

2r2 − GMm
r

I At r = a : E = 1
2mv2 − GMm

a . At maximum height : ṙ = 0

→ 1
2mv2 − GMm

a = ma2v2 sin2 α
2r2

max
− GMm

rmax
(1)

→
(

v2 − 2GM
a

)
r2
max + 2GM rmax − a2v2 sin2 α = 0

I Solve and take the positive root
I Note from Equ.(1) : When ṙ → 0 as rmax →∞ , the rocket

just escapes the earth’s gravitational field

i.e. 1
2mv2 − GMm

a → 0 , vesc =
√

2GM
a (independent of α)
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3. Effective potential

I Energy equation : E = 1
2mṙ2 + J2

2mr2 + U(r)

I Define effective potential : Ueff (r) = J2

2mr2 + U(r)

→ then E = 1
2mṙ2 + Ueff (r)

I Note this has the same form as a 1-D energy expression :
→ E = 1

2mẋ2 + U(x) and can treat like a 1D problem
I Allows to predict important features of motion without

solving the radial equation

→ 1
2mṙ2 = E − Ueff (r) ← LHS is always positive

→ Ueff (r) < E

The only locations where the particle is allowed to
go are those with Ueff (r) < E
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Ueff (r) for inverse square law

I Ueff (r) = J2

2mr2 − GmM
r

I Ueff (r) < Etot for all r

Three cases :

I Etot < 0 : Bound
(closed) orbit with
r1 < r < r2

I Etot has minimum
energy at r = r0 :
dUeff

dr = 0 , circular
motion with ṙ = 0

I Etot > 0 : Unbound
(open) orbit with
r > r3
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4. Orbits
r(θ) = r0

1+e cos θ : the orbit equation

(Note that the derivation of this is off syllabus.)
Total energy in ellipse parameters E = α

2r0

(
e2 − 1

)
Also E = 1

2mṙ2 + J2

2mr2 − α
r

I e = 0, r = r0,E = − α
2r0

→ motion in a circle
I If 0 < e < 1 , E < 0

→ motion is an ellipse
I If e = 1 , E = 0

r(θ) = r0
1+cos θ

→ motion is a parabola
I If e > 1 , E > 0

→ motion is a hyperbola
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4.1 Example : putting a satellite into geostationary orbit
i) Calculate the orbital velocity in a geostationary orbit and
show that its radius is approximately 40,000 km.

I Geostationary orbit : the circular orbit around the Earth
above the equator which has a period of 24 hours

I Equate forces : GMm
r2 = mv2

r → v =
√

GM
r

I Period T = 2πr
v = 2πr3/2

(GM)1/2 = 86,400 s

I Radius r =
(
(GM)1/2T

2π

)2/3
= 4.2× 107 m

I vG = 3080 ms−1

ii) A satellite is to be placed in to a geostationary orbit from an
elliptical orbit with perigee at a geocentric radius of rB =
8,000 km and apogee at rA =42,000 km. When it is at apogee,
a brief firing of its rocket motor places it into the circular orbit.
Calculate the change in velocity the motor needs to provide.
15



Example continued

I Conservation of angular
momentum, points A & B

vA rA = vB rB

I Energy at A = energy at B
1
2mv2

A −
GMm

rA
= 1

2mv2
B −

GMm
rB

I Solve for vA

→ v2
A = 2GM(1/rB−1/rA)

(r2
A/r

2
B−1)

I To place in geostationary orbit,
need to boost rockets by
∆v = vG − vA

I Putting in numbers
→ ∆v = 1280 ms−1
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4.2 Example : change in orbit angular momentum
I A spacecraft is in circular motion about a planet
I The spacecraft is given an impulse which leaves the magnitude

of velocity v0 unchanged but the spacecraft now makes an angle
θ wrt direction of motion

I Question: what is the apogee and perigee of the subsequent
elliptical orbit?

I Conservation of angular
momentum, points A & B

J = mv0R sin(π2 − θ) = mvBrB

I Energy at A = energy at B
1
2mv2

0 −
α
R = 1

2mṙ2 + J2

2mr2
B
− α

rB

where α = GMm
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Example continued

I At point B, ṙ = 0, energy conservation becomes
1
2mv2

0 −
α
R =

m2v2
0 R2 cos2 θ

2mr2
B

− α
rB

I Equate forces for circular motion to get v0 :
mv2

0
R = α

R2 → v2
0 = α

mR

I Sub for v2
0 : energy conservation becomes

α
2R −

α
R = αR cos2 θ

2r2
B
− α

rB

I Solve for rB → rB = R ±
√

R2 − R2 cos θ

rB = R(1± sin θ)

(+ve solution is apogee, −ve is perigee)
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4.3 Impulse leaving angular momentum unchanged

II Example: A satellite in circular orbit has been given an impulse
leaving J unchanged. The kinetic energy is changed by
T = βT0. Describe the subsequent motion.

I If J is not changed, impulse must be perpendicular to the
direction of motion as shown with angular part of the velocity
unchanged.

I E = 1
2mṙ2 + J2

2mr2 − α
r

I Circular orbit:

→ ṙ = 0 , J = mr0v0 (1)

→ Einitial = 1
2mv2

0 −
α
r0

I Equate forces :

→ mv2
0

r0
= α

r2
0

→ v2
0 = α

mr0
(2)
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Example continued

I New orbit (elliptical): Enew = 1
2βmv2

0 − α
r0

I Equate energies: subsequent motion
described by:
1
2βmv2

0 − α
r0
= 1

2mṙ2 + J2

2mr2 − α
r (3)

I Now solve for rmin , rmax . Set ṙ = 0 for
apogee and perigee.

I From (1), (2), (3)
→ (β − 2) r2 + 2r0 r − r2

0 = 0

I rmin,max =
− r0±
√

r2
0 +(β−2) r2

0
(β−2)
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4.4 The hyperbolic orbit

I Orbit equation : r(θ) = r0
1+e cos θ

I Ellipse : e < 1
( x

a

)2
+
( y

b

)2
= 1

I Hyperbola :
e > 1

(x
a

)2 −
(y

b

)2
= 1
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Hyperbolic orbit : the distance of closest approach
Example : a comet deviated by the gravitational attraction of a planet.
Velocity v = v0 when r→∞.

I h is known as the impact parameter
I Angular momentum J = m r× v

→ |J| = mvr sin γ = mv0h (seen as r →∞)
→ Total energy E = 1

2 mv2
0 (also seen as r →∞)
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Distance of closest approach continued

I E = 1
2mṙ2 + J2

2mr2 − α
r , where α = GmM

I At distance of closest approach r = rmin → ṙ = 0

I E = J2

2mr2
min
− α

rmin

→ r2
min + α

E rmin − J2

2mE = 0

I Solution:
I rmin = −

(
α

2E

)
[1− (1 + 2EJ2

mα2 )
1
2 ] (J2 = (mv0h)2 ; E = 1

2 mv2
0 )

I Velocity v ′ at distance of closest approach: line to trajectory is a
right angle.

→ J = mv ′rmin = mv0h → v ′ = v0h
rmin
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The angle of deflection, φ
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Impulse method

I Directly from the diagram : ∆vx = 2v0 cos θ∞ (1)
I By symmetry, integrated change in vy = 0 : ∆vy = 0

I Change in ∆px : m∆vx =
∫ +∞
−∞ Fxdt =

∫ +∞
−∞ Fx (

mr2θ̇

J
)︸ ︷︷ ︸

= 1

dt

→ m∆vx = (m
J )
∫ +θ∞
−θ∞ Fx r2dθ

I But F = −( αr2 )r̂ → Fx = − α
r2 cos θ

→ m∆vx = −2(mα
J )
∫ θ∞

0 cos θdθ

→ ∆vx = −(2α
J ) sin θ∞ (2)

I From (1) & (2) → −(2α
J ) sin θ∞ = 2v0 cos θ∞

I tan θ∞ = − Jv0
α → θ∞ + β = π ; φ+ 2β = π

I θ∞ = φ
2 + π

2 ; tan θ∞ = tan(φ2 + π
2 ) = − cot φ2

cot φ2 = J v0
α =

mhv2
0

α =
hv2

0
GM
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