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OUTLINE : CP1 REVISION LECTURE 1 :
INTRODUCTION TO CLASSICAL MECHANICS

1. Force and work
1.1 Newton’s Laws of motion
1.2 Work done and conservative forces

2. Projectile motion
2.1 Constant acceleration
2.2 Resistive force FR ∝ v
2.3 Resistive force FR ∝ v2

3. Rocket motion
3.1 The rocket : vertical launch

4. Two-body collisions
4.1 The Centre of Mass frame
4.2 Two-body elastic collision in 1D : Lab to CM system
4.3 Solving collision problems in the CM frame
4.4 Inelastic collisions
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Outline of revision lectures

Three revision lectures:
I Today:

I Force and work
I Projectile motion
I Rocket motion
I Two-body collisions

I Tomorrow:
I Central forces
I Effective potential
I Circular motion and orbits

I Tuesday Week 2:
I Rotational motion
I Lagrangian mechanics
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1. Force and work

1.1 Newton’s Laws of motion

I NI: Every body continues in a state of rest or in uniform
motion (constant velocity in straight line) unless acted upon
by an external force.

I NII: The rate of change of momentum is equal to the
applied force: F = ma

I NIII: Action and reaction forces are equal in magnitude and
opposite in direction.

Problems of particle motion involve
solving the equation of motion in 3D:

F = m dv
dt
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1.2 Work and conservative forces
Work done from A→ B Wab =

∫ b
a F dx = 1

2mv2
b −

1
2mv2

a

For any conservative force: Wab = U(a)− U(b)

For a conservative field of force, the work done depends only
on the initial and final positions of the particle independent of
the path. Equivalent definitions:

I The force is derived from a (scalar) potential function:
F(r) = −∇U → F (x) = −dU

dx etc.
I There is zero net work by the force when moving a particle

around any closed path: W =
∮

c Fdx = 0
I In equivalent vector notation ∇× F = 0

For any force: Wab = 1
2mv2

b −
1
2mv2

a

For a conservative force: Wab = U(a)− U(b)

If these are different, energy is dissipated to the environment
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2. Projectile motion
2.1 Constant acceleration in 2D, no resistive force

I a = dv
dt = constant

I
∫ v

v0
dv =

∫ t
0 adt

→ v = v0 + at

I
∫ r

0 dr =
∫ t

0(v0 + at)dt

→ r = v0t + 1
2at2

Under gravity: a = −gŷ → ax = 0; ay = −g

I vx = v0 cos θ
I vy = v0 sin θ − gt

I x = (v0 cos θ)t
I y = (v0 sin θ)t − 1

2gt2

Trajectory: y = (tan θ)x − g
2v2

0
(sec2θ)x2
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2.2 Resistive force FR ∝ v

I Example of body falling vertically downwards
under gravity with air resistance ∝ velocity.

v = 0 at x = 0 and t = 0
I Equation of motion:

m dv
dt = mg − βv

I
∫ v

0
dv

g−αv =
∫ t

0 dt where α = β
m

I
[
− 1
α loge(g − αv)

]v
0 = t

→ g−αv
g = exp (−αt)

v = g
α (1− exp(−αt))

I Calculate distance travelled

x =
∫ t

0
g
α (1− exp(−αt)) dt

I As t →∞, v → g
α

I Terminal velocity

7



2.3 Resistive force FR ∝ v2

I Body falls vertically downwards under gravity with
air resistance ∝ [velocity]2, v = 0, x = 0 at t = 0

I Equation of motion: m dv
dt = mg − βv2

I Terminal velocity when dv
dt = 0 : vT =

√
mg
β

I Equation of motion becomes dv
dt = g

(
1− v2/v2

T

)
I Integrate

∫ v
0

dv
g(1−v2/v2

T )
=
∫ t

0 dt

I Standard integral :
∫ 1

1−z2 dz = 1
2 loge

(
1+z
1−z

)
I

[
vT
2g loge

(
1+v/vT
1−v/vT

)]v

0
= t → 1+v/vT

1−v/vT
= exp(t/τ) , where τ = vT

2g

→ (1− v
vT

) = (1 + v
vT

) exp(− t
τ )

Velocity as a function of time:

v = vT

[
1−exp(−t/τ)
1+exp(−t/τ)

]
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Velocity as a function of distance FR ∝ v2

I Equation of motion: dv
dt = g

(
1− v2/v2

T

)
I Write dv

dt = dv
dx

dx
dt = v dv

dx

I
∫ v

0
v dv

g(1−v2/v2
T )

=
∫ x

0 dx

I

[
− v2

T
2g loge

(
1− v2/v2

T

)]v

0
= x

→
(
1− v2/v2

T

)
= exp (−x/xT ) , where xT =

v2
T

2g

v2 = v2
T [1− exp (−x/xT )]
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3. Rocket motion
I A body of mass m + δm has

velocity v . In time δt it ejects
mass δm, which is moving with
velocity u along the line of v

I The change in mass is
m + δm→ m, the change in
velocity is v → v + δv

I Case 1: No external force
Change of momentum:
δp = m(v + δv) + uδm︸ ︷︷ ︸

After

− (m + δm)v︸ ︷︷ ︸
Before

= 0

I δp = mv + mδv + uδm −mv − vδm
= mδv − (v − u) δm = 0

I δp = m δv − (v − u)︸ ︷︷ ︸
Relative velocity=w

δm = 0
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I Divide by δt : δp
δt = m δv

δt − w δm
δt = 0 : Let δt → 0

Total mass conserved d
dt (m + δm) = 0 : δm

δt → −
dm
dt

No external force m dv
dt + w dm

dt = 0

I Now apply an external force F
Change of momentum = δp = Fδt = mδv − w δm
Divide by δt , let δt → 0 and δm

δt → −
dm
dt

m dv
dt + w dm

dt = F [Rocket equation]
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3.1 The rocket : vertical launch

I Rocket equation:
m dv

dt + w dm
dt = F

I Rocket rises against gravity
F = −mg

I Eject mass with constant relative
velocity to the rocket w

I Rocket ejects mass uniformly:
m = m0 − αt

→ dm
dt = −α

I Now consider upward motion:

I mdv = (−mg + wα)dt →
∫ vf

vi
dv =

∫ tf
ti

(
−g + wα

m0−αt

)
dt

I vf − vi =
[
−g(tf − ti )− w loge

(m0−αtf )
(m0−αti )

]
= [−g(tf − ti )− w loge(mf/mi )]
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Rocket vertical launch, continued
The rocket starts from rest at t = 0; half the mass is fuel. What is the
velocity and height reached by the rocket at burn-out at time t = T ?

I v =
[
−gt − w loge

(m0−αt)
(m0)

]
=
[
−gt − w loge

(
1− α

m0
t
)]

= dx
dt

I What is the condition for the rocket to rise ? → dv
dt > 0

At t = 0, m = m0,
dm
dt = −α : αw −m0g > 0 → w > m0g

α

I m = m0 − αt ; at burnout t = T , m = m0
2 → α = m0

2T

I Maximum velocity is at the burn-out of the fuel:

At t = T : vmax = −gT + w loge 2

Height :
∫ x

0 dx =
∫ T

0

[
−gt − w loge

(
1− α

m0
t
)]

dt

I Standard integral :
∫

loge z dz = z loge z − z

I x = − gT 2

2 + w mo
α

[(
1− α

m0
t
)(

loge

(
1− α

m0
t
))
−
(

1− α
m0

t
)]T

0

I After simplification : x = − gT 2

2 + wT (1− loge 2)
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4. Two-body collisions

Conservation of momentum: m1u1 + m2u2 = m1v1 + m2v2

Conservation of energy:
1
2m1u

2
1 + 1

2m2u
2
2 = 1

2m1v
2
1 + 1

2m2v
2
2 + ∆E (= 0 if elastic)

We deal with 2 inertial frames:

I The Laboratory frame: this is the frame where measurements
are actually made

I The centre of mass frame: this is the frame where the centre of
mass of the system is at rest and where the total momentum of
the system is zero
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Elastic collisions in 1D in the Lab frame, m2 at rest

Solve the conservation of energy & momentum equations in 1D

v1 = m1−m2
m1+m2

u1 and v2 = 2m1
m1+m2

u1

Special cases:

I m1 = m2 : → v1 = 0, v2 = u1

(complete transfer of momentum)
I m1 >> m2 : Gives the limits v1 → u1, v2 → 2u1

(m2 has double u1 velocity)
I m1 << m2 : Gives the limits v1 → −u1, v2 → 0

(“brick wall” collision)
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Elastic collisions in 2D in the Lab frame: equal masses,
target at rest

m1 = m2 = m , u2 = 0

I Momentum: mu1 = mv1 + mv2 → u1 = v1 + v2

Squaring → u2
1 = v2

1 + v2
2 + 2v1.v2

I Energy: 1
2mu2

1 = 1
2mv2

1 + 1
2mv2

2 → u2
1 = v2

1 + v2
2

I Hence 2v1.v2 = 0

→ EITHER v1 = 0,v2 = u1 OR θ1 + θ2 = π
2

I Either a head-on collision or opening angle is 90◦
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4.1 The Centre of Mass frame

I The position of the centre of
mass is given by:
rcm = 1

M
∑n

i=1 mi ri

where M =
∑n

i=1 mi

I Velocity of the CM: vcm = ṙcm =
∑n

i=1 mi ṙi∑
i mi

=
∑n

i=1 mi vi∑
i mi

I Velocity of a body in the CM w.r.t. the Lab v′i = vi − vcm

I The total momentum in the CM:∑
i p
′
i
=
∑

i miv
′
i =

∑
i mi(vi − vcm) = 0

The total momentum of a system of particles in the CM
frame is equal to zero
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4.2 Two-body elastic collision in 1D : Lab to CM system

In CM, total momentum = 0, incoming
and outgoing velocities are equal

magnitudes and opposite direction.

I vcm = (m1u1+m2u2)
(m1+m2)

I Before in CM :
m1u′1 + m2u′2 = 0

I After in CM :
m1v ′1 + m2v ′2 = 0

I If elastic:

u′1 − u′2 = v ′2 − v ′1
I Solving:

v ′1 = −u′1
v ′2 = −u′2
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Collisions in the CM frame in 2D
I Conservation of momentum in CM:

m1u
′
1 + m2u

′
2 = 0 ; m1v

′
1 + m2v

′
2 = 0

I Conservation of energy in CM:
1
2 m1u

′2
1 + 1

2 m2u
′2
2 = 1

2 m1v
′2
1 + 1

2 m2v
′2
2

Solve the above equations :
|v ′1| = |u′1| ; |v ′2| = |u′2| → In CM, speeds before = speeds after
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4.3 Solving collision problems in the CM frame

1) Find centre of mass velocity vCM

I (u1 − vCM)m1 + (u2 − vCM)m2 = 0
I → vCM =

m1u1+m2u2
m1+m2

2) Transform initial Lab velocities to CM

I u′1 = u1 − vCM , u′2 = u2 − vCM

3) Get final CM velocities

I |v′1| = |u′1| ; |v′2| = |u′2|
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4) Transform vectors back to the Lab frame

I v1 = v′1 + vCM ; v2 = v2
′ + vCM

5) Can then use trigonometry to solve

Also note: TLab = T ′ + 1
2Mv2

cm

The kinetic energy in the Lab frame is equal the kinetic
energy in CM + the kinetic energy of CM
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Example: Elastic collision, m2 = 2m1, θ1 = 30◦
Find the velocities v1 and v2 and the angle θ2

Magnitude of velocities:

I vCM = m1u1+m2u2
m1+m2

= u0
3

I u′1 = u0 − vCM = 2u0
3

I u′2 = −vCM = −u0
3

I |v ′1| = |u′1| = 2u0
3

I |v ′2| = |u′2| = u0
3
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Relationships between angles and speeds

I Sine rule:

(sin 30/2u0
3 ) = (sinα/u0

3 )

→ sinα = 1
4 → α = 14.5◦

I β = 30 + α = 44.5◦

I sin 30/2u0
3 = sin(180− 44.5)/v1

→ v1 = 0.93u0

I Cosine rule:

v2
2 = (u0

3 )2 + (u0
3 )2 − 2(u0

3 )2 cosβ

→ v2 = 0.25u0

I Sine rule:

(sin 44.5/v2) = (sin θ2/
u0
3 )

→ θ2 = 68.0◦
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4.4 Inelastic collisions

An inelastic collision is where
energy is lost (or there is
internal excitation).

Coefficient of restitution

Defined as e = |v2−v1|
|u1−u2|

= Speed of relative separation
Speed of relative approach

We can show e =
√

1− ∆E
T ′ (was derived in lectures)

where T ′ = 1
2µu2

1 with µ = m1m2
m1+m2

(the reduced mass)

I T ′ is the initial energy in the centre of mass frame, hence e is
related to the fractional energy loss in this frame

I e = 1 completely elastic; e = 0 completely inelastic,

in general 0 < e < 1
24



Completely inelastic collision in the CM vs. Lab
Before collision:

After collision:

I KE in CM: T ′ = TLAB − 1
2(m1 + m2)v2

CM
I Differentiate: Loss in KE ∆T ′ = ∆TLAB (obvious)
I Max. energy that can be lost in the CM : ∆T ′ = T ′

I Max. energy can be lost in Lab = 1
2m1u2 − 1

2(m1 + m2)v2
CM
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