CP1 REVISION LECTURE 1

INTRODUCTION TO

CLASSICAL MECHANICS
Prof. N. Harnew
University of Oxford

$$
\text { TT } 2017
$$

OUTLINE : CP1 REVISION LECTURE 1 :
 INTRODUCTION TO CLASSICAL MECHANICS

1. Force and work
1.1 Newton's Laws of motion
1.2 Work done and conservative forces
2. Projectile motion
2.1 Constant acceleration
2.2 Resistive force $F_{R} \propto v$
2.3 Resistive force $F_{R} \propto v^{2}$
3. Rocket motion
3.1 The rocket : vertical launch
4. Two-body collisions
4.1 The Centre of Mass frame
4.2 Two-body elastic collision in 1D : Lab to CM system
4.3 Solving collision problems in the CM frame
4.4 Inelastic collisions

Outline of revision lectures

Three revision lectures:

- Today:
- Force and work
- Projectile motion
- Rocket motion
- Two-body collisions
- Tomorrow:
- Central forces
- Effective potential
- Circular motion and orbits
- Tuesday Week 2:
- Rotational motion
- Lagrangian mechanics

1. Force and work
 1.1 Newton's Laws of motion

- NI: Every body continues in a state of rest or in uniform motion (constant velocity in straight line) unless acted upon by an external force.
- NII: The rate of change of momentum is equal to the applied force: $\underline{\mathbf{F}}=$ ma
- NIII: Action and reaction forces are equal in magnitude and opposite in direction.

Problems of particle motion involve solving the equation of motion in 3D:

$$
\underline{\mathbf{F}}=m \frac{d \mathbf{v}}{d t}
$$

1.2 Work and conservative forces

Work done from $\mathrm{A} \rightarrow \mathrm{B} \quad W_{a b}=\int_{a}^{b} F d x=\frac{1}{2} m v_{b}^{2}-\frac{1}{2} m v_{a}^{2}$
For any conservative force: $\quad W_{a b}=U(a)-U(b)$
For a conservative field of force, the work done depends only on the initial and final positions of the particle independent of the path. Equivalent definitions:

- The force is derived from a (scalar) potential function:

$$
\underline{\mathbf{F}}(\underline{\mathbf{r}})=-\nabla U \rightarrow F(x)=-\frac{d U}{d x} \text { etc. }
$$

- There is zero net work by the force when moving a particle around any closed path: $W=\oint_{C} F d x=0$
- In equivalent vector notation $\underline{\nabla} \times \underline{\mathbf{F}}=0$

For any force: $\quad W_{a b}=\frac{1}{2} m v_{b}^{2}-\frac{1}{2} m v_{a}^{2}$
For a conservative force: $W_{a b}=U(a)-U(b)$
If these are different, energy is dissipated to the environment

2. Projectile motion

2.1 Constant acceleration in 2D, no resistive force

- $\underline{\mathbf{a}}=\frac{d \mathrm{v}}{d t}=$ constant
- $\int_{v_{0}}^{v} d \underline{v}=\int_{0}^{t} \underline{a} d t$

$$
\rightarrow \underline{\mathbf{v}}=\underline{\mathbf{v}}_{0}+\underline{\mathbf{a}} t
$$

- $\int_{0}^{r} d \underline{\mathbf{r}}=\int_{0}^{t}\left(\underline{v}_{0}+\underline{a} t\right) d t$ $\rightarrow \underline{\mathbf{r}}=\underline{\mathbf{v}}_{0} t+\frac{1}{2} \underline{a} t^{2}$

Under gravity: $\underline{\mathbf{a}}=-g \underline{\hat{y}} \rightarrow a_{x}=0 ; \quad a_{y}=-g$

- $v_{x}=v_{0} \cos \theta$
- $v_{y}=v_{0} \sin \theta-g t$
- $x=\left(v_{0} \cos \theta\right) t$
- $y=\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}$

Trajectory: $\quad y=(\tan \theta) x-\frac{g}{2 v_{0}^{2}}\left(\sec ^{2} \theta\right) x^{2}$

2.2 Resistive force $F_{R} \propto v$

- Example of body falling vertically downwards under gravity with air resistance \propto velocity.

$$
v=0 \text { at } x=0 \text { and } t=0
$$

- Equation of motion:

$$
m \frac{d v}{d t}=m g-\beta v
$$

- $\int_{0}^{v} \frac{d v}{g-\alpha v}=\int_{0}^{t} d t$ where $\alpha=\frac{\beta}{m}$
- $\left[-\frac{1}{\alpha} \log _{e}(g-\alpha v)\right]_{0}^{v}=t$
$\rightarrow \frac{g-\alpha v}{g}=\exp (-\alpha t)$

$$
v=\frac{g}{\alpha}(1-\exp (-\alpha t))
$$

- Calculate distance travelled

$$
x=\int_{0}^{t} \frac{g}{\alpha}(1-\exp (-\alpha t)) d t
$$

- As $t \rightarrow \infty, v \rightarrow \frac{g}{\alpha}$
- Terminal velocity

2.3 Resistive force $F_{R} \propto v^{2}$

- Body falls vertically downwards under gravity with air resistance $\propto\left[\right.$ velocity ${ }^{2}, v=0, x=0$ at $t=0$
- Equation of motion: $m \frac{d v}{d t}=m g-\beta v^{2}$
- Terminal velocity when $\frac{d v}{d t}=0: v_{T}=\sqrt{\frac{m g}{\beta}}$

- Equation of motion becomes $\frac{d v}{d t}=g\left(1-v^{2} / v_{T}^{2}\right)$
- Integrate $\int_{0}^{v} \frac{d v}{g\left(1-v^{2} / v_{T}^{2}\right)}=\int_{0}^{t} d t$
- Standard integral : $\int \frac{1}{1-z^{2}} d z=\frac{1}{2} \log _{e}\left(\frac{1+z}{1-z}\right)$
- $\left[\frac{v_{T}}{2 g} \log _{e}\left(\frac{1+v / v_{T}}{1-v / v_{T}}\right)\right]_{0}^{v}=t \rightarrow \frac{1+v / v_{T}}{1-v / v_{T}}=\exp (t / \tau)$, where $\tau=\frac{v_{T}}{2 g}$ $\rightarrow\left(1-\frac{v}{v_{T}}\right)=\left(1+\frac{v}{v_{T}}\right) \exp \left(-\frac{t}{\tau}\right)$
Velocity as a function of time:

$$
V=V_{T}\left[\frac{1-\exp (-t / \tau)}{1+\exp (-t / \tau)}\right]
$$

Velocity as a function of distance $F_{R} \propto v^{2}$

- Equation of motion: $\frac{d v}{d t}=g\left(1-v^{2} / v_{T}^{2}\right)$
- Write $\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
- $\int_{0}^{v} \frac{v d v}{g\left(1-v^{2} / v_{T}^{2}\right)}=\int_{0}^{x} d x$

- $\left[-\frac{v_{T}^{2}}{2 g} \log _{e}\left(1-v^{2} / v_{T}^{2}\right)\right]_{0}^{v}=x$
$\rightarrow\left(1-v^{2} / v_{T}^{2}\right)=\exp \left(-x / x_{T}\right) \quad, \quad$ where $x_{T}=\frac{v_{T}^{2}}{2 g}$

$$
v^{2}=v_{T}^{2}\left[1-\exp \left(-x / x_{T}\right)\right]
$$

3. Rocket motion

- A body of mass $m+\delta m$ has velocity v. In time δt it ejects mass δm, which is moving with velocity u along the line of v
- The change in mass is $m+\delta m \rightarrow m$, the change in

BEFORE

AFTER
 velocity is $v \rightarrow v+\delta v$

- Case 1: No external force

Change of momentum:

$$
\delta p=\underbrace{m(v+\delta v)+u \delta m}_{\text {After }}-\underbrace{(m+\delta m) v}_{\text {Before }}=0
$$

- $\delta p=m v+m \delta v+u \delta m-m v-v \delta m$

$$
=m \delta v-(v-u) \delta m=0
$$

- $\delta p=m \delta v-$

$$
\underbrace{(v-u)} \quad \delta m=0
$$

Relative velocity $=w$

BEFORE

AFTER

- Divide by $\delta t: \quad \frac{\delta p}{\delta t}=m \frac{\delta v}{\delta t}-w \frac{\delta m}{\delta t}=0:$ Let $\delta t \rightarrow 0$ Total mass conserved $\frac{d}{d t}(m+\delta m)=0: \frac{\delta m}{\delta t} \rightarrow-\frac{d m}{d t}$

No external force
 $$
m \frac{d v}{d t}+w \frac{d m}{d t}=0
$$

- Now apply an external force F

Change of momentum $=\delta p=F \delta t=m \delta v-w \delta m$
Divide by δt, let $\delta t \rightarrow 0$ and $\frac{\delta m}{\delta t} \rightarrow-\frac{d m}{d t}$

$$
m \frac{d v}{d t}+w \frac{d m}{d t}=F \quad[\text { Rocket equation }]
$$

3.1 The rocket : vertical launch

- Rocket equation:

$$
m \frac{d v}{d t}+w \frac{d m}{d t}=F
$$

- Rocket rises against gravity $F=-m g$
- Eject mass with constant relative velocity to the rocket w
- Rocket ejects mass uniformly:
$m=m_{0}-\alpha t$

$\rightarrow \frac{d m}{d t}=-\alpha$
- Now consider upward motion:
- $m d v=(-m g+w \alpha) d t \rightarrow \int_{v_{i}}^{v_{f}} d v=\int_{t_{i}}^{t_{f}}\left(-g+\frac{w \alpha}{m_{0}-\alpha t}\right) d t$
- $v_{f}-v_{i}=\left[-g\left(t_{f}-t_{i}\right)-w \log _{e} \frac{\left(m_{0}-\alpha t_{f}\right)}{\left(m_{0}-\alpha t_{i}\right)}\right]$
$=\left[-g\left(t_{f}-t_{i}\right)-w \log _{e}\left(m_{f} / m_{i}\right)\right]$

Rocket vertical launch, continued

The rocket starts from rest at $t=0$; half the mass is fuel. What is the velocity and height reached by the rocket at burn-out at time $t=T$?

- $v=\left[-g t-w \log _{e} \frac{\left(m_{0}-\alpha t\right)}{\left(m_{0}\right)}\right]=\left[-g t-w \log _{e}\left(1-\frac{\alpha}{m_{0}} t\right)\right]=\frac{d x}{d t}$
- What is the condition for the rocket to rise ? $\rightarrow \frac{d v}{d t}>0$ At $t=0, m=m_{0}, \frac{d m}{d t}=-\alpha: \alpha w-m_{0} g>0 \rightarrow w>\frac{m_{0} g}{\alpha}$
- $m=m_{0}-\alpha t$; at burnout $t=T, m=\frac{m_{0}}{2} \rightarrow \alpha=\frac{m_{0}}{2 T}$
- Maximum velocity is at the burn-out of the fuel:

At $t=T: v_{\max }=-g T+w \log _{e} 2$
Height : $\int_{0}^{x} d x=\int_{0}^{T}\left[-g t-w \log _{e}\left(1-\frac{\alpha}{m_{0}} t\right)\right] d t$

- Standard integral : $\int \log _{e} z d z=z \log _{e} z-z$
- $x=-\frac{g T^{2}}{2}+\frac{w m_{0}}{\alpha}\left[\left(1-\frac{\alpha}{m_{0}} t\right)\left(\log _{e}\left(1-\frac{\alpha}{m_{0}} t\right)\right)-\left(1-\frac{\alpha}{m_{0}} t\right)\right]_{0}^{T}$
- After simplification :

$$
x=-\frac{g T^{2}}{2}+w T\left(1-\log _{e} 2\right)
$$

4. Two-body collisions

Conservation of momentum: $\quad m_{1} \underline{\mathbf{u}}_{1}+m_{2} \underline{\mathbf{u}}_{2}=m_{1} \underline{\mathbf{v}}_{1}+m_{2} \underline{\mathbf{v}}_{2}$
Conservation of energy:
$\frac{1}{2} m_{1} \underline{\mathbf{u}}_{1}^{2}+\frac{1}{2} m_{2} \underline{\mathbf{u}}_{2}^{2}=\frac{1}{2} m_{1} \underline{\mathbf{v}}_{1}^{2}+\frac{1}{2} m_{2} \underline{\mathbf{v}}_{2}^{2}+\Delta E$ ($=0$ if elastic)
We deal with 2 inertial frames:

- The Laboratory frame: this is the frame where measurements are actually made
- The centre of mass frame: this is the frame where the centre of mass of the system is at rest and where the total momentum of the system is zero

Elastic collisions in $\underset{m_{1}}{ }{\underset{u_{1}}{ }}^{m_{2}}$ in the Lab_{2} frame, m_{2} at rest before

AFTER

Solve the conservation of energy \& momentum equations in 1D

$$
v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} u_{1} \quad \text { and } \quad v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} u_{1}
$$

Special cases:

- $m_{1}=m_{2}: \rightarrow v_{1}=0, v_{2}=u_{1}$
(complete transfer of momentum)
- $m_{1} \gg m_{2}$: Gives the limits $v_{1} \rightarrow u_{1}, v_{2} \rightarrow 2 u_{1}$ (m_{2} has double u_{1} velocity)
- $m_{1} \ll m_{2}$: Gives the limits $v_{1} \rightarrow-u_{1}, v_{2} \rightarrow 0$ ("brick wall" collision)

Elastic collisions in 2D in the Lab frame: equal masses, target at rest

$$
m_{1}=m_{2}=m, \quad u_{2}=0
$$

- Momentum: $\quad m \underline{\mathbf{u}}_{1}=m \underline{\mathbf{v}}_{1}+m \underline{\mathbf{v}}_{2} \rightarrow \underline{\mathbf{u}}_{1}=\underline{\mathbf{v}}_{1}+\underline{\mathbf{v}}_{2}$ Squaring $\rightarrow \underline{u}_{1}^{2}=\underline{v}_{1}^{2}+\underline{v}_{2}^{2}+2 \underline{v}_{1} \cdot \underline{v}_{2}$
- Energy: $\frac{1}{2} m \underline{\mathbf{u}}_{1}^{2}=\frac{1}{2} m \underline{\mathbf{v}}_{1}^{2}+\frac{1}{2} m \underline{\mathbf{v}}_{2}^{2} \rightarrow \underline{\mathbf{u}}_{1}^{2}=\underline{\mathbf{v}}_{1}^{2}+\underline{\mathbf{v}}_{2}^{2}$
- Hence $2 \underline{v}_{1} \cdot \underline{v}_{2}=0$
\rightarrow EITHER $\underline{\mathbf{v}}_{1}=0, \underline{\mathbf{v}}_{2}=\underline{\mathbf{u}}_{1}$ OR $\theta_{1}+\theta_{2}=\frac{\pi}{2}$
- Either a head-on collision or opening angle is 90°

4.1 The Centre of Mass frame

- The position of the centre of mass is given by:
$\underline{\mathrm{r}}_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \underline{\mathbf{r}}_{\mathrm{i}}$
where $M=\sum_{i=1}^{n} m_{i}$

- Velocity of the CM: $\quad \underline{\mathbf{v}}_{\mathrm{cm}}=\dot{\underline{\mathbf{r}}}_{\mathrm{cm}}=\frac{\sum_{i=1}^{n} m_{i} \dot{\underline{\dot{H}}}_{\mathrm{i}}}{\sum_{i} m_{i}}=\frac{\sum_{i=1}^{n} m_{i} \mathbf{v}_{\mathrm{i}}}{\sum_{i} m_{i}}$
- Velocity of a body in the CM w.r.t. the Lab $\quad \mathbf{v}_{\mathbf{i}}^{\prime}=\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{cm}}$
- The total momentum in the CM:

$$
\sum_{i} \underline{\mathbf{p}}_{\mathbf{i}}^{\prime}=\sum_{i} m_{i} \underline{\mathbf{v}}_{\mathbf{i}}^{\prime}=\sum_{i} m_{i}\left(\underline{\mathbf{v}}_{\mathbf{i}}-\underline{\mathbf{v}}_{\mathrm{cm}}\right)=\mathbf{0}
$$

The total momentum of a system of particles in the CM frame is equal to zero
4.2 Two-body elastic collision in 1D : Lab to CM system

Observer
travelling with
 the CM

- $v_{c m}=\frac{\left(m_{1} u_{1}+m_{2} u_{2}\right)}{\left(m_{1}+m_{2}\right)}$
- Before in CM :

$$
m_{1} u_{1}^{\prime}+m_{2} u_{2}^{\prime}=0
$$

- After in CM :

$$
m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}=0
$$

- If elastic:

$$
u_{1}^{\prime}-u_{2}^{\prime}=v_{2}^{\prime}-v_{1}^{\prime}
$$

- Solving:

$$
\begin{aligned}
& v_{1}^{\prime}=-u_{1}^{\prime} \\
& v_{2}^{\prime}=-u_{2}^{\prime}
\end{aligned}
$$

Collisions in the CM frame in $2 D$

- Conservation of momentum in CM: $m_{1} \underline{\mathbf{u}}^{\prime}{ }_{1}+m_{2} \underline{\mathbf{u}}^{\prime}{ }_{2}=0 ; m_{1} \underline{\mathbf{v}}^{\prime}{ }_{1}+m_{2} \underline{\mathbf{v}}^{\prime}{ }_{2}=0$
- Conservation of energy in CM:

$$
\frac{1}{2} m_{1} \underline{\mathbf{u}}_{1}^{\prime 2}+\frac{1}{2} m_{2} \underline{\mathbf{u}}_{2}^{\prime 2}=\frac{1}{2} m_{1} \underline{\mathbf{v}}_{1}^{\prime 2}+\frac{1}{2} m_{2} \underline{\mathbf{v}}_{2}^{\prime 2}
$$

LAB

CENTRE OF MASS

Solve the above equations:
$\left|v_{1}^{\prime}\right|=\left|u_{1}^{\prime}\right| ;\left|v_{2}^{\prime}\right|=\left|u_{2}^{\prime}\right| \rightarrow \quad \ln \mathrm{CM}$, speeds before $=$ speeds after
4.3 Solving collision problems in the CM frame

LAB

CENTRE OF MASS

1) Find centre of mass velocity $v_{C M}$

- $\left(\underline{\mathbf{u}}_{1}-\underline{\mathbf{v}}_{C M}\right) m_{1}+\left(\underline{\mathbf{u}}_{2}-\underline{\mathbf{v}}_{C M}\right) m_{2}=0$
- $\rightarrow \underline{\mathbf{v}}_{C M}=\frac{m_{1} \underline{\mathbf{u}}_{1}+m_{2} \underline{\mathbf{u}}_{2}}{m_{1}+m_{2}}$

2) Transform initial Lab velocities to CM

- $\underline{\mathbf{u}}_{1}^{\prime}=\underline{\mathbf{u}}_{1}-\underline{\mathbf{v}}_{C M} \quad, \quad \underline{\mathbf{u}}_{2}^{\prime}=\underline{\mathbf{u}}_{2}-\underline{\mathbf{v}}_{C M}$

3) Get final CM velocities

$$
\rightarrow\left|\underline{\mathbf{v}}_{1}^{\prime}\right|=\left|\underline{\mathbf{u}}_{1}^{\prime}\right| \quad ; \quad\left|\underline{\mathbf{v}}_{2}^{\prime}\right|=\left|\underline{\mathbf{u}}_{2}^{\prime}\right|
$$

4) Transform vectors back to the Lab frame
$\mathbf{v}_{1}=\underline{\mathbf{v}}_{1}^{\prime}+\underline{\mathbf{v}}_{C M} \quad ; \quad \underline{\mathbf{v}}_{2}=\underline{\mathbf{v}}_{\mathbf{2}}{ }^{\prime}+\underline{\mathbf{v}}_{C M}$

5) Can then use trigonometry to solve

$$
\text { Also note: } \quad T_{L a b}=T^{\prime}+\frac{1}{2} M v_{c m}^{2}
$$

The kinetic energy in the Lab frame is equal the kinetic energy in CM + the kinetic energy of CM

Example: Elastic collision, $m_{2}=2 m_{1}, \theta_{1}=30^{\circ}$

Find the velocities v_{1} and v_{2} and the angle θ_{2}

LAB after

Magnitude of velocities:

- $v_{C M}=\frac{m_{1} u_{1}+m_{2} u_{2}}{m_{1}+m_{2}}=\frac{u_{0}}{3}$
- $u_{1}^{\prime}=u_{0}-v_{C M}=\frac{2 u_{0}}{3}$
- $u_{2}^{\prime}=-v_{C M}=-\frac{u_{0}}{3}$
- $\left|v_{1}^{\prime}\right|=\left|u_{1}^{\prime}\right|=\frac{2 u_{0}}{3}$
- $\left|v_{2}^{\prime}\right|=\left|u_{2}^{\prime}\right|=\frac{u_{0}}{3}$

Relationships between angles and speeds

- Sine rule:
$\left(\sin 30 / \frac{2 u_{0}}{3}\right)=\left(\sin \alpha / \frac{u_{0}}{3}\right)$
$\rightarrow \sin \alpha=\frac{1}{4} \rightarrow \alpha=14.5^{\circ}$
- $\beta=30+\alpha=44.5^{\circ}$
- $\sin 30 / \frac{2 u_{0}}{3}=\sin (180-44.5) / v_{1}$
$\rightarrow v_{1}=0.93 u_{0}$
- Cosine rule:

$$
V_{c m}=\frac{u_{0}}{3}
$$

$v_{2}^{2}=\left(\frac{u_{0}}{3}\right)^{2}+\left(\frac{u_{0}}{3}\right)^{2}-2\left(\frac{u_{0}}{3}\right)^{2} \cos \beta$
$\rightarrow v_{2}=0.25 u_{0}$

- Sine rule:
$\left(\sin 44.5 / v_{2}\right)=\left(\sin \theta_{2} / \frac{u_{0}}{3}\right)$
$\rightarrow \theta_{2}=68.0^{\circ}$

4.4 Inelastic collisions

An inelastic collision is where energy is lost (or there is internal excitation).

Coefficient of restitution

$$
\text { Defined as } \quad \boldsymbol{e}=\frac{\left|\underline{\mathbf{v}}_{2}-\mathbf{v}_{1}\right|}{\left|\underline{\mathbf{u}}_{1}-\underline{\mathbf{u}}_{2}\right|} \quad=\frac{\text { Speed of relative separation }}{\text { Speed of relative approach }}
$$

We can show $\quad e=\sqrt{1-\frac{\Delta E}{T^{\prime}}}$ (was derived in lectures) where $T^{\prime}=\frac{1}{2} \mu u_{1}^{2}$ with $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ (the reduced mass)

- T^{\prime} is the initial energy in the centre of mass frame, hence e is related to the fractional energy loss in this frame
- $e=1$ completely elastic; $e=0$ completely inelastic, in general $0<e<1$

Completely inelastic collision in the CM vs. Lab

 Before collision:

LAB before

$$
\stackrel{\underline{u}_{1}^{\prime}=\underline{u}_{1}-\underline{V}_{c m}}{\longrightarrow} \stackrel{\underline{u}_{2}^{\prime}=\underline{u}_{2}-\underline{V}_{c m}}{\longleftrightarrow}
$$

CM before

After collision:

CM after

LAB after

- KE in CM: $T^{\prime}=T_{L A B}-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{C M}^{2}$
- Differentiate: Loss in KE $\Delta T^{\prime}=\Delta T_{\text {LAB }}$ (obvious)
- Max. energy that can be lost in the CM : $\Delta T^{\prime}=T^{\prime}$
- Max. energy can be lost in Lab $=\frac{1}{2} m_{1} u^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{C M}^{2}$

