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First Year Physics: Prelims CP1

Classical Mechanics: Prof. Neville Harnew

Problem Set II: Collisions in two dimensions & applications of the equation of
motion

Questions 1-10 are standard examples. Questions 11-14 are additional questions that may also be
attempted or left for revision. Problems with asterisks are either more advanced than average or may
require significant algebra. All topics are covered in lectures 6-9 of Michaelmas term.

Collisions in 2-D

1. Elastic collisions in 2D:
(a) Show that in an elastic collision of two particles masses m1 and m2 viewed in the centre-of-mass
frame, the magnitude of the velocity of each particle is unchanged by the collision.
(b) A particle P1 mass m with vector velocity u1 collides elastically with an identical particle P2 also
of mass m that is at rest. The velocities of the particles after the collision are v1 and v2, respectively.
Working in the laboratory frame, show that v1 ·v2 = 0 and hence deduce that, after the collision, either
(i) P1 comes to rest or (ii) P1 and P2 move at right angles to each other. Show also that u1 · v1 > 0,
and hence deduce that P1 is scattered through an angle of less than 90◦ wrt the incident particle.
(c) Solve the problem in (b) by considering the same collision as viewed in the centre-of-mass frame
and then transforming to the lab.

2. Collision of an alpha particle with a proton: An alpha particle of mass 4m moves at
non-relativistic speed and collides elastically and obliquely with a stationary proton, mass m. Draw
diagrams illustrating the situation after the collision in the centre-of-mass frame and in the lab frame.
Using a geometrical or algebraic method, show that in the lab frame the alpha particle cannot be
deflected by more than 14.5◦ from its original direction of motion.

3. Inelastic collision in 2-D
A particle of mass 2m travelling at a non-relativistic speed u in the laboratory collides inelastically
with a stationary particle of mass m. By considering the collision in the centre-of-mass frame, show
that the speed in the laboratory frame of the less massive particle, after the collision, is

v2 =
2u

3

(
cos θ ±

√
α2 − sin2 θ

)
,

where θ is the angle between the particle’s trajectory and the original direction of the more massive
particle, and α is the coefficient of restitution, defined as the magnitude of the relative velocity of the
particles after the collision divided by the magnitude of the relative velocity before the collision.

Work, potential energy and conservation of energy

4. The Work Energy Theorem:

(a) Show that the work done by the force F (x) to move a particle of mass m from a to b is given
by: Wab = T (b) − T (a) where T (x) is the kinetic energy at the point x. Does this only apply for
conservative forces?

(b) The particle moves towards the origin of the x-axis under the influence of the force F = k/x2

where k is a positive constant. If the velocity at x = x◦ is u, use the result in (a) to find the distance
of minimum approach of the particle to the origin.

1



5. Gravitational potential of two point masses: A particle P of mass m moves on the x-axis
under the combined gravitational attraction of two particle, each of mass M, fixed at the points (0,±a)
in the x− y plane.

(a) Show that the force acting on the particle P is given by

F (x) = − 2mMGx

(a2 + x2)3/2

where G is the gravitation constant.
(b) Find the corresponding potential energy. Discuss the possible motion of the particle using the

potential energy curve, showing the regions of bound or unbound motion.
(c) Assuming that P is initially released from rest at x = 3a/4, find the maximum speed achieved

by the particle in the subsequent motion.

6. SHM about stable equilibrium: The Lennard-Jones potential describes the potential energy
between two atoms, each of mass m, in a molecule

U(r) = ϵ[(r0/r)
12 − 2(r0/r)

6],

where ϵ and r0 are constants and r is the distance between the atoms.

(a) Sketch U(r) and show that the position of the minimum potential energy and the depth of the
potential well are r0 and ϵ, respectively.

(b) Expand U(r) as a Taylor series about r = r0 up to the quadratic term.

(c) Use (b) to show that the motion for small displacements about the minimum is simple harmonic
and find its frequency. [Ans: ω = (12/r0)

√
ϵ/m.]

(d) Typical vibrational frequencies of diatomic molecules lie in the near infrared (around 3 ×
1013 Hz). Estimate the value of the effective spring constant for a typical molecule, such as N2.

[Ans: k ∼ 400Nm−1.]

Applications of the equation of motion and resistive forces

7. Projectile in 2D: A ball is thrown with initial speed V , at an angle θ above the horizontal, over
flat ground. Show that the motion is restricted to a single plane. Neglecting air resistance, find

(a) the time taken for the ball to reach the ground;
(b) the maximum height reached by the ball;
(c) the horizontal distance travelled by the ball before hitting the ground (range);
(d) the kinetic and potential energies at the position of maximum height (and verify that their sum

equals the initial energy).
The following are experimental data on the range and muzzle velocity of mortar shells, all fired at 45◦

to the horizontal. The time of flight is also tabulated. Compare the ranges and times with the simple
treatment above. How would you explain any differences?

Muzzle Velocity (m/s) Range (m) Time (s)
101.8 972 14.4
112.2 1160 15.7
121.9 1349 17.0
131.4 1539 18.2

8. A body of mass 1 kg falls from a height of 100 m and reaches the ground with a speed of 40 m s−1.
What is the average air resistance? Discuss the meaning of the term ‘average’ in this connection.
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9. An air-filled toy balloon, with a diameter of 30 cm and a mass (not counting the air inside) of
about 0.5 g, falls from rest in air.

(a) What is the terminal speed of fall when assuming a linear drag law, taking the balloon to be a
sphere and that Stokes’ formula for viscous drag is applicable: drag force F1 = 6πaηv [N], where a is
the radius of the sphere [m], η = 1.7× 10−5 kg m−1 s−1 is the viscosity of air and v is velocity.

(b) Given this drag law, show that the downward velocity v of the balloon satisfies a differential
equation of the form

dv

dt
= g − λv ,

and give an expression for the quantity λ. Solve this differential equation, using the appropriate initial
condition, and hence find how long it takes for the balloon to come to within 5 per cent of its terminal
speed.

(c) How would your result for (a) change if an additional drag force due to turbulent eddies of the
form F2 = 0.87(av)2 [N] (where a is in m and v is in m s−1) were taken into account? Which is more
realistic?

10. A ball of mass m is projected vertically upwards at a velocity v◦. The ball experiences an air
resistance force (in addition to gravity) of the form FR = −αv2 where α > 0 is constant and v is the
velocity, and reaches a maximum height h before it returns back to the point of projection.

(a) Write down the equations of motion of the ball during its upward and and downward journeys
and show that the maximum height reached is given by

h = a ln[1 + (v◦/vl)
2]

where vl =
√
(mg/α) and a = (vl)

2/(2g).
(b) Show that the velocity of the ball when it returns back to the point of projection is given by

v2r = v2l [1− exp(−h/a)].

Additional questions

11.* Gravitational Potential of the Earth Denote the radius of the Earth by RE and the value
of the acceleration due to gravity at the surface by g.

(a) Show that free-fall in the Earth’s gravitational field from infinity results in the same velocity at
the surface as if the object had dropped a distance RE under a constant acceleration of g = GME/R

2
E ,

where G is the gravitational constant and ME is the mass of Earth.
(b) Show that for heights h small compared to RE the first correction to the velocity at the surface

for an object in free-fall is: v =
√
2gh

(
1− h

2RE

)
.

(c) For a height h small compared to RE show that the fractional change in period of a pendulum
clock is given by: ∆T/T = h/RE . Does the clock gain or lose and evaluate the change for a height of
100 m in seconds per week?

12.* A canon is placed on an inclined plane of angle α with the horizontal. The gun is aligned with
the steepest line of the plane and can fire shells in both the upward and downward directions, at an
initial speed V and an angle θ with respect to the plane.

(a) Find the distance where the shell will land up the plane for θ = α = 30◦ (Ans: 2
3(V

2/g))
(b) Show that the ratio of the maximum ranges up and down the plane is given by:

Rup

Rdown
=

1− sinα

1 + sinα
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13. A body of mass M , travelling in a straight horizontal line, is supplied with constant power P
and is subjected to a resistance Mkv2, where v is its speed and k is a constant.

(a) Show that the speed of the body cannot exceed a certain value vm and find an expression for
vm.

(b) Show that, starting from rest, the body acquires half the maximum speed after travelling a
distance ln(8/7)/(3k).

(c) If the power is then cut off and an additional retarding force of constant value F imposed, find
the subsequent time which elapses before the body comes to rest.

[Ans: (a) v3m = P/(Mk); (c) time=
√
M/Fk tan−1[0.5vm

√
Mk/F ].]

14.* Work against non-conservative forces
This question follows on from Question 10:
(a) Calculate, by direct integration over the resistive term, the energy dissipation during the upward

journey and show that your result is consistent with the work-energy theorem.
(b) Using the result of Q10 (b) for the final velocity, show that for v◦ = vl half of the initial energy

is lost during the round trip.
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