$$
\begin{gathered}
\text { LECTURES } 11-19 \\
\text { INTRODUCTION TO } \\
\text { CLASSICAL MECHANICS } \\
\text { Prof. N. Harnew } \\
\text { University of Oxford } \\
\text { HT } 2017
\end{gathered}
$$

OUTLINE : INTRODUCTION TO MECHANICS

 LECTURES 11-19Intro : programme for Hilary term (20 lectures)
11.1 Variable mass : a body acquiring mass
11.2 Example - the raindrop
11.3 Ejecting mass : the rocket equation
11.4 The rocket : horizontal launch
12.1 The rocket : vertical launch
12.2 The 1-stage vs. 2 -stage rocket
12.3 Non-inertial reference frames
12.3.1 Commonplace examples
12.3.2 Example- accelerating lift
13.1 Magnetic Force on a Charged Particle
13.2 B Field only, $v \perp B$
13.3 Motion under electric and magnetic fields
13.4 Kinetic energy in E \& B fields
13.4.1 B only, $v \perp B$
$2 \quad$ 13.4.2 B and E
13.5 Cyclotron motion ($E \& B$ fields)
14.1 Differentiation of vectors wrt time
14.1.1 The position vector in polar coordinates
14.1.2 The velocity vector in polar coordinates
14.1.3 The acceleration vector in polar coordinates
14.2 Angular momentum and torque
14.3 Angular velocity ω for rotation in a circle
15.1 Angular acceleration α for rotation in a circle
15.2 Angular motion : work and power
15.3 Correspondence between linear and angular quantities
15.3.1 Reformulation of Newton's laws for angular motion
15.3.2 Example: the simple pendulum
15.4 Moments of forces
15.5 Central forces
15.5.1 A central force is conservative
16.1 Central force: the equation of motion
16.2 Motion under a central force
16.2.1 Motion in a plane

3
16.2.2 Sweeping out equal area in equal time
16.3 Central force : the total energy
16.3.1 The potential term (inverse square interaction)
16.3.2 Example
17.1 Effective potential
17.1.1 $U_{\text {eff }}(r)$ for inverse square law
17.2 Examples
17.2.1 Example 1: 2-D harmonic oscillator
17.2.2 Example 2 : Rotating ball on table
18.1 The orbit equation
18.1.1 The ellipse geometry
18.2 Kepler's Laws
18.2.1 Kepler III
18.2.2 Planetary data
18.3 Elliptical orbit via energy $\left(E_{\min }<E<0\right)$
19.1 Example: mistake in the direction of a satellite
19.1.1 Orbits with the same energy
19.2 Impulse leaving angular momentum unchanged
19.2.1 Orbits with the same angular momentum
d9.3 Mutual orbits
19.3.1 Example: binary star

Programme for Hilary term (20 lectures)

- Lectures 1-5

Rocket motion. Motion in B and E fields

- Lectures 6-10

Central forces (orbits)

- Lectures 11-15

Rotational dynamics (rigid body etc)

- Lectures 16-20

Lagrangian dynamics

- Plus 4 problem sets for your enjoyment

11.1 Variable mass : a body acquiring mass

- A body of mass m has velocity v. In time δt it it acquires mass δm, which is moving along v direction with velocity u
- The change in mass m is $m+\delta m$,
 the change in velocity v is $v+\delta v$
- Case 1: No external force. Change of momentum Δp

$$
\Delta p=\underbrace{(m+\delta m)(v+\delta v)}_{\text {After }}-\underbrace{(m v+u \delta m)}_{\text {Before }}=0
$$

- $m v+m \delta v+v \delta m+\underbrace{\delta m \delta v}_{\text {lgnore }}-m v-u \delta m=m \delta v+(v-u) \delta m=0$
- Divide by δt (time over which mass acquisition occurs) :

$$
\frac{\Delta p}{\delta t}=m \frac{\delta v}{\delta t}+\underbrace{(v-u)} \frac{\delta m}{\delta t}=0
$$

Relative velocity, w

- As $\delta t \rightarrow 0, m \frac{d v}{d t}+w \frac{d m}{d t}=0$ (in this case $\frac{d v}{d t}$ is -ve as expected)

A body acquiring mass - with external force

- Case 2: Application of an external force F
- NII : change of momentum $=\Delta p=F \delta t=m \delta v+w \delta m$
as before, where $w=(v-u)$
- Divide by δt and let $\delta t \rightarrow 0$

$$
m \frac{d v}{d t}+w \frac{d m}{d t}=F
$$

Note: ONLY in the case when $u=0$ does $\frac{d}{d t}(m v)=F$

11.2 Example - the raindrop

An idealised raindrop has initial mass m_{0}, is at height h above ground and has zero initial velocity. As it falls it acquires water (added from rest) such that its increase in mass at speed v is given by $d m / d t=b m v$ where b is a constant. The air resistance is of the form $k m v^{2}$ where k is a constant.

- Formulate the equation of motion :
- $m \frac{d v}{d t}+w \frac{d m}{d t}=F$
$\rightarrow m \frac{d v}{d t}+w \frac{d m}{d t}=m g-k m v^{2}$
- $w=v($ since $u=0) ; \quad \frac{d m}{d t}=b m v$
- $\frac{d v}{d t}+(b+k) v^{2}=g$

- Terminal velocity :
- $\frac{d v}{d t}=0 \rightarrow v_{T}=\sqrt{\frac{g}{b+k}}$

The raindrop, continued

- Calculate raindrop mass vs. distance
- $\frac{d m}{d t}=b m v$
- $\frac{d m}{d x}=\frac{d m}{d t} \frac{d t}{d x}=\frac{b m v}{v}=b m$
$\rightarrow \frac{d m}{m}=b d x$
Integrate : $\left[\log _{e} m\right]_{m_{0}}^{m}=[b x]_{0}^{x}$
- $m=m_{0} \exp (b x)$

(Mass grows exponentially with x)
- What is its speed at ground level ?
- $\frac{d v}{d t}+(b+k) v^{2}=g \rightarrow \frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
- $\int_{0}^{v_{h}} \frac{v d v}{g-(b+k) v^{2}}=\int_{0}^{h} d x \rightarrow h=\left[-\left(\frac{\log _{e}\left(g-(b+k) v^{2}\right)}{2(b+k)}\right)\right]_{0}^{v_{h}}$
- Solving :

$$
v_{h}=\sqrt{\frac{g}{b+k}[1-\exp (-2 h(b+k))]}
$$

11.3 Ejecting mass : the rocket equation

- A body of mass m has velocity v. In time δt it ejects mass δm, with relative velocity w to the body
- Change of momentum $\Delta p=$ $\underbrace{\delta m(v-w)+(m-\delta m)(v+\delta v)}_{-\underbrace{m v}_{\text {Before }}}$
$=v \delta m-w \delta m+m v+m \delta v-$
$v \delta m-\underbrace{\delta m \delta v}_{\text {Ignore }}-m v$

BEFORE IN CM

- With external force : $F=\frac{\Delta p}{\delta t}=m \frac{\delta v}{\delta t}-w \frac{\delta m}{\delta t}$
- As $\delta t \rightarrow 0, \frac{\delta v}{\delta t} \rightarrow \frac{d v}{d t} \& \frac{\delta m}{\delta t} \rightarrow-\frac{d m}{d t}$ (as $\frac{\delta m}{\delta t}$ is +ve but $\frac{d m}{d t}$ is -ve)
- Hence, again,

$$
F=m \frac{d v}{d t}+w \frac{d m}{d t}
$$

the rocket equation

11.4 The rocket : horizontal launch

- Rocket equation:
$m \frac{d v}{d t}+w \frac{d m}{d t}=F=0$ (no gravity)
- Assume mass is ejected with constant relative velocity to the rocket w
- $m d v=-w d m \rightarrow d v=-w \frac{d m}{m}$
- Initial/final velocity $=v_{i}, v_{f}$ Initial/final mass $=m_{i}, m_{f}$
- $\int_{v_{i}}^{v_{f}} d v=-w \int_{m_{i}}^{m_{f}} \frac{d m}{m}$
- $v_{f}-v_{i}=w \log _{e}\left(m_{i} / m_{f}\right)$

This expression gives the dependence of rocket velocity as a function of its mass

12.1 The rocket : vertical launch

- Rocket equation:

$$
m \frac{d v}{d t}+w \frac{d m}{d t}=F
$$

- Rocket rises against gravity $F=-m g$
- Mass is ejected at constant velocity w relative to the rocket
- Rocket ejects mass uniformly:
$m=m_{0}-\alpha t$
$\rightarrow \frac{d m}{d t}=-\alpha$

- Now consider upward motion:
- $m d v=(-m g+w \alpha) d t \rightarrow \int_{v_{i}}^{v_{f}} d v=\int_{t_{i}}^{t_{f}}\left(-g+\frac{w \alpha}{m_{0}-\alpha t}\right) d t$
- $v_{f}-v_{i}=\left[-g\left(t_{f}-t_{i}\right)-w \log _{e} \frac{\left(m_{0}-\alpha t_{f}\right)}{\left(m_{0}-\alpha t_{i}\right)}\right]$
$=\left[-g\left(t_{f}-t_{i}\right)-w \log _{e}\left(m_{f} / m_{i}\right)\right]$

Rocket vertical launch, continued

The rocket starts from rest at $t=0$; half the mass is fuel. What is the velocity and height reached by the rocket at burn-out at time $t=T$?

- $v=\left[-g t-w \log _{e} \frac{\left(m_{0}-\alpha t\right)}{\left(m_{0}\right)}\right]=\left[-g t-w \log _{e}\left(1-\frac{\alpha}{m_{0}} t\right)\right]=\frac{d x}{d t}$
- What is the condition for the rocket to rise ? $\rightarrow \frac{d v}{d t}>0$ At $t=0, m=m_{0}, \frac{d m}{d t}=-\alpha: \alpha w-m_{0} g>0 \rightarrow w>\frac{m_{0} g}{\alpha}$
- $m=m_{0}-\alpha t$; at burnout $t=T, m=\frac{m_{0}}{2} \rightarrow \alpha=\frac{m_{0}}{2 T}$
- Maximum velocity is at the burn-out of the fuel:

At $t=T: v_{\max }=-g T+w \log _{e} 2$
Height : $\int_{0}^{x} d x=\int_{0}^{T}\left[-g t-w \log _{e}\left(1-\frac{\alpha}{m_{0}} t\right)\right] d t$

- Standard integral : $\int \log _{e} z d z=z \log _{e} z-z$
- $x=-\frac{g T^{2}}{2}+\frac{w m_{o}}{\alpha}\left[\left(1-\frac{\alpha}{m_{0}} t\right)\left(\log _{e}\left(1-\frac{\alpha}{m_{0}} t\right)\right)-\left(1-\frac{\alpha}{m_{0}} t\right)\right]_{0}^{T}$
- After simplification :

$$
x=-\frac{g T^{2}}{2}+w T\left(1-\log _{e} 2\right)
$$

12.2 The 1-stage vs. 2-stage rocket

A two stage rocket is launched vertically from earth, total mass $M_{0}=10000 \mathrm{~kg}$ and carries an additional payload of $m=100 \mathrm{~kg}$. The fuel is 75% of the mass in both stages; burn rate $\alpha=500 \mathrm{~kg} \mathrm{~s}^{-1}$, thrust velocity $w=2.5 \mathrm{~km} \mathrm{~s}^{-1}$. The mass of the 2nd stage is 900 kg .
i) Calculate the final speed for the equivalent single stage rocket
ii) Find the final speed of the 2-stage rocket

(i) Single stage rocket :

- Time to burn-out :

$$
\left|\frac{\Delta m}{\Delta t}\right|=\alpha \rightarrow T=0.75\left(M_{1}+M_{2}\right) / 500\left[\mathrm{~kg} \mathrm{~s}^{-1}\right]
$$

- From before : $v_{f}=-g T+w \log _{e}\left(m_{i} / m_{f}\right)$

$$
m_{i}=M_{1}+M_{2}+m ; m_{f}=0.25\left(M_{1}+M_{2}\right)+m
$$

- Single stage : $v_{f}=3.25 \mathrm{~km} \mathrm{~s}^{-1}$
- Earth's escape speed :

$$
\begin{aligned}
& \frac{1}{2} m v^{2}>\frac{G M_{e} m}{R_{E}} \rightarrow v_{\text {esc }}=\sqrt{\frac{2 G M_{E}}{R_{E}}} \\
& \rightarrow \quad v_{e S C}=11.2 \mathrm{~km} \mathrm{~s}^{-1}\left(\text { i.e. } v_{f}<v_{e s c}\right)
\end{aligned}
$$

(ii) The 2-stage rocket

Stage 1

- $\left|\frac{\Delta m}{\Delta t}\right|=\alpha \rightarrow T=0.75 M_{1} / 500\left[\mathrm{~kg} \mathrm{~s}^{-1}\right]$
- $v_{1}=-g T+w \log _{e}\left(m_{i} / m_{f}\right)$ $m_{i}=M_{1}+M_{2}+m ; m_{f}=0.25 M_{1}+M_{2}+m$
- After first stage $: v_{f}=2.68 \mathrm{~km} \mathrm{~s}^{-1}$

Stage 2

- $\left|\frac{\Delta m}{\Delta t}\right|=\alpha \rightarrow T=0.75 M_{2} / 500\left[\mathrm{~kg} \mathrm{~s}^{-1}\right]$
- $v_{2}=v_{1}-g T+w \log _{e}\left(m_{i} / m_{f}\right)$ $m_{i}=M_{2}+m ; m_{f}=0.25 M_{2}+m$
- After second stage :

$$
v_{2}=2.68+2.80=5.48 \mathrm{~km} \mathrm{~s}^{-1}
$$

- Need a 3rd stage, more thrust or less payload to escape

12.3 Non-inertial reference frames

A frame in which Newton's first law is not satisfied - the frame is accelerating (i.e. subject to an external force)

Recall Galilean transformation but now $\underline{\mathbf{u}}$ varies with time :

	Galilean transformation	Accelerating frame
Position	$\underline{\mathbf{r}}^{\prime}=\underline{\mathbf{r}}-\underline{\mathbf{u}} t$	$\underline{\mathbf{r}^{\prime}}=\underline{\mathbf{r}}-\int \underline{\mathbf{u}}(t) d t$
Velocity	$\frac{\mathbf{v}^{\prime}}{}=\underline{\mathbf{v}}-\underline{\mathbf{u}}$	$\frac{\mathbf{v}^{\prime}}{\underline{d}^{\prime}}=\underline{\mathbf{v}}-\underline{\mathbf{u}}(t)$
Acceleration	$\frac{d \mathbf{v}^{\prime}}{d t}=\frac{d \mathbf{v}}{d t}$	$\frac{\mathbf{v}}{d t}-\frac{d \mathbf{u}}{d t}$
Force on mass	$\underline{\mathbf{F}}^{\prime}\left(\underline{\mathbf{r}}^{\prime}\right)=F(\underline{\mathbf{r}})=m \frac{d \mathbf{v}}{d t}$	$\underline{\mathbf{F}}^{\prime}\left(\underline{\mathbf{r}}^{\prime}\right)=\underline{\mathbf{F}}(\underline{\mathbf{r}})-m \frac{\mathbf{u}}{d t}$

- So even if $F(\underline{\mathbf{r}})=0$, from NII, there is an apparent (or "ficticious") force acting in S^{\prime} of $\underline{\mathbf{F}}^{\prime}\left(\underline{\mathbf{r}}^{\prime}\right)=-m \frac{d \mathbf{u}}{d t}$

12.3.1 Commonplace examples

Mass rotating in a circle

Accelerating train

- In the inertial frame

$$
\begin{aligned}
& \sum F_{x}=T \sin \theta=m a \\
& \sum F_{y}=T \cos \theta-m g=0
\end{aligned}
$$

- In the non-inertial frame

$$
\begin{aligned}
& \sum F_{x}^{\prime}=T \sin \theta-F_{\text {fictitious }} \\
& \sum F_{y}^{\prime}=T \cos \theta-m g=0
\end{aligned}
$$

In NIF need to introduce
$F_{\text {fictitious }}=m a$ to explain the displacement of the bob.

12.3.2 Example : accelerating lift

- First consider the lift in free-fall
- The ball is "weightless" (stationary or moves at constant velocity) according to an observer in the lift \rightarrow lift becomes an inertial frame (like in deep space) : NI.
- To this observer the fictitious acceleration ($-\frac{d \underline{\mathbf{u}}}{d t}$) balances the

Free falling lift gravitational acceleration

Observer in accelerating lift

- Lift plus passenger (total mass M) is now accelerated upwards with force F. Passenger drops ball mass m^{\prime} from height $h\left(M \gg m^{\prime}\right)$.
- Total force on lift $F_{\text {tot }}=F-M g=M a$ Acceleration of lift $a=\frac{F}{M}-g$
- According to passenger in lift frame, downwards acceleration of ball is

$$
=\left(\frac{F}{M}-g\right)+g=\frac{F}{M} \text { (downwards) }
$$

- Hence weight of ball appears to passenger to be $(F / M) \times m^{\prime}$
- Check this:

If $F=0$, free-fall, ball is weightless
If $F=M g$, lift is stationary, ball has weight $m^{\prime} g$

- Time for ball to reach floor, use $h=\frac{1}{2} a t^{2} \rightarrow t=\sqrt{\frac{2 h M}{F}}$

Observer watching from a frame outside the lift

- Observer watches ball fall with acceleration g and the lift rise with acceleration $\frac{F}{M}-g$
- Equate times when ball reaches floor:

$$
t=\underbrace{\sqrt{\frac{2 h^{\prime}}{g}}}_{\text {ball falling }}=\underbrace{\sqrt{\frac{2\left(h-h^{\prime}\right)}{F / M-g}}}_{\text {lift rising }}
$$

- Solve for $h^{\prime} \rightarrow h^{\prime}=\frac{M g h}{F}$
- Substitute back

Ball released
 $\rightarrow t=\sqrt{\frac{2 M h}{F}}$ as before.

13.1 Magnetic Force on a Charged Particle

$\underline{\mathbf{F}}=\mathbf{q} \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

- \underline{F} is the magnetic force
- q is the charge
- $\underline{\mathrm{v}}$ is the velocity of the moving charge
- \underline{B} is the magnetic field

Because the magnetic force is perpendicular to the displacement ($d W=\underline{\mathbf{F} . d x}$), the force does no work on the particle

- Kinetic energy does not change
- Speed does not change
- Only direction changes
- Particle moves in a circle if $v \perp B$

$\underline{\mathbf{F}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

Newton's second law in components

- $m \ddot{x}=F_{X}$
- $m \ddot{y}=F_{y}$
- $m \ddot{z}=F_{z}$

Simple case: \underline{v} perpendicular to $\underline{\mathbf{B}}$

- Magnetic force= centripetal force
- $F=q v B=\frac{m v^{2}}{R}$ (magnitudes)
where R is the radius of curvature
- $R=\frac{m v}{q B}=\frac{p}{q B}$
p is the particle momentum

13.2 B Field only, $\underline{\mathbf{v}} \perp \underline{\mathrm{B}}$

$$
m \underline{\ddot{\ddot{ }}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}
$$

- $m \ddot{x}=F_{x}, m \ddot{y}=F_{y}, m \ddot{z}=F_{z}$
- $\underline{\mathrm{B}}$-field only $\rightarrow \underline{\mathrm{B}}=B_{z} \underline{\mathbf{k}}$
- $\underline{\mathbf{v}}=(\dot{x}, \dot{y}, 0)$
$\underline{\mathbf{v}} \times \underline{\mathbf{B}}=\left|\begin{array}{ccc}\dot{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \\ \dot{x} & \dot{y} & \dot{z} \\ 0 & 0 & B_{z}\end{array}\right|=\dot{y} B_{z} \underline{\mathbf{i}}-\dot{x} B_{z} \underline{\mathbf{j}}$
- $m \ddot{x}=q B_{z} \dot{y} ; \quad m \ddot{y}=-q B_{z} \dot{x}$
- $\ddot{x}=\omega \dot{y} ; \quad \ddot{y}=-\omega \dot{x} \quad$ where $\omega=\frac{q B_{z}}{m}$

$\dot{y}=-\omega x+c ; \quad(\dot{y}=0$ at $t=0 \rightarrow c=0)$
- At $t=0$:
- $\underline{\mathbf{r}}_{0}=(0,0,0)$
- $\underline{\mathbf{v}}_{0}=\left(u_{0}, 0,0\right)$
- $\ddot{x}+\omega^{2} x=0 \rightarrow x=A_{1} \cos \omega t+A_{2} \sin \omega t$
- At $t=0, x=0 \rightarrow A_{1}=0 \rightarrow x=A_{2} \sin \omega t$
- $\dot{x}=A_{2} \omega \cos \omega t$; at $t=0, \dot{x}=u_{0} \rightarrow A_{2}=\frac{u_{0}}{\omega}$

B Field only, continued

$$
x=\frac{u_{0}}{\omega} \sin \omega t
$$

- From before :
$\dot{y}=-\omega x=-u_{0} \sin \omega t$
- $y=\frac{u_{0}}{\omega} \cos \omega t+c^{\prime}$
- At $t=0, y=0 \rightarrow c^{\prime}=-\frac{u_{0}}{\omega}$

$$
y=\frac{u_{0}}{\omega}(\cos \omega t-1)
$$

- $x=R \sin \omega t \quad\left(R=\frac{u_{0}}{\omega}=\frac{u_{0} m}{q B_{z}}\right)$
- $y+R=R \cos \omega t$
\rightarrow Circle $x^{2}+(y+R)^{2}=R^{2}$
- If at $t=0, \underline{\mathbf{v}}_{0}=\left(u_{0}, 0, w_{0}\right)$

The particle will spiral in circles about the z-direction:

$$
z=w_{0} t ; x^{2}+(y+R)^{2}=R^{2}
$$

13.3 Motion under electric and magnetic fields

$$
m \underline{\ddot{\ddot{ }}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}+q \underline{\mathbf{E}}
$$

- $m \ddot{x}=F_{x}, m \ddot{y}=F_{y}, m \ddot{z}=F_{z}$
- $\underline{\mathrm{B}}$-field $\rightarrow \underline{\mathrm{B}}=B_{z} \underline{\mathrm{k}}$
- $\underline{\mathrm{E}}$-field $\rightarrow \underline{\mathrm{E}}=E_{x} \underline{\underline{\mathrm{i}}}$
$\mathbf{v} \times \underline{\mathbf{B}}=\left|\begin{array}{ccc}\underline{\dot{x}} & \mathbf{j} & \underline{\mathbf{k}} \\ \dot{\bar{y}} & \dot{z} \\ 0 & 0 & B_{z}\end{array}\right|=\dot{y} B_{z} \underline{\underline{i}}-\dot{x} B_{z} \mathbf{j}$
- $m \ddot{x}=q B_{z} \dot{y}+q E_{x} ; \quad m \ddot{y}=-q B_{z} \dot{x}$
- At $t=0$:
- $\ddot{x}=\omega \dot{y}+\frac{q E_{x}}{m}$ where $\omega=\frac{q B_{z}}{m}$
- $\dot{y}=-\omega x \quad$ (as before $\dot{y}=0$ at $t=0$)

- $\ddot{x}+\omega^{2} x=\frac{q E_{x}}{m}$: solution $x=x_{1}+x_{2}$
- Complementary function : $x_{1}=A_{1} \cos \omega t+A_{2} \sin \omega t$
- Particular integral : $x_{2}=\frac{q E_{x}}{m \omega^{2}}$

Electric and magnetic fields, continued

- $x=A_{1} \cos \omega t+A_{2} \sin \omega t+\frac{q E_{x}}{m \omega^{2}}$

Define $a=\frac{q E_{x}}{m \omega^{2}}$

- $t=0, x=0 \rightarrow A_{1}+a=0$
- $t=0, \dot{x}=0 \rightarrow A_{2}=0$

$$
x=a(1-\cos \omega t)
$$

- From before :
$\dot{y}=-\omega x=-a \omega(1-\cos \omega t)$
- $y=a(\sin \omega t-\omega t)+c$
- At $t=0, y=0 \rightarrow c=0$

$$
y=a(\sin \omega t-\omega t)
$$

- $-a \cos \omega t=x-a$

B	${ }^{b_{x}=a}$	E	
			Path of particle on of centres

- $a \sin \omega t=y+a \omega t$
$\rightarrow \mathrm{A}$ circle rolling down the $-y$ axis : $(x-a)^{2}+(y+a \omega t)^{2}=a^{2}$

13.4 Kinetic energy in $E \& B$ fields

13.4.1 B only, $v \perp B$

- $x=\frac{u_{0}}{\omega} \sin \omega t \rightarrow \dot{x}=u_{0} \cos \omega t$
- $y=\frac{u_{0}}{\omega}(\cos \omega t-1)$
$\rightarrow \dot{y}=-u_{0} \sin \omega t$

- $T=\frac{1}{2} m\left[u_{0} \cos \omega t\right]^{2}+\frac{1}{2} m\left[-u_{0} \sin \omega t\right]^{2}$
$=\frac{1}{2} m u_{0}^{2} \rightarrow$ No energy change

13.4.2 B and E

- $x=a(1-\cos \omega t) \rightarrow \dot{x}=a \omega \sin \omega t$
- $y=a(\sin \omega t-\omega t)$

$$
\rightarrow \dot{y}=a \omega(\cos \omega t-1)
$$

- $T=\frac{1}{2} m(a \omega)^{2}(1+1-2 \cos \omega t)$
$=\frac{1}{2} m(2 \boldsymbol{a} \omega)^{2} \sin ^{2} \frac{\omega t}{2} \rightarrow$ W.D. by $\underline{\mathbf{E}}$ field

13.5 Cyclotron motion ($E \& B$ fields)

- Let the electric field vary with time as:

$$
\underline{\mathbf{E}}=E_{0}\left(\begin{array}{c}
\cos \omega t \\
-\sin \omega t \\
0
\end{array}\right), \underline{\mathbf{B}}=B_{z} \underline{\mathbf{k}}
$$

- Can show by direct substitution $x(t)=R[\omega t \sin \omega t+\sin \omega t-1]$ $y(t)=R[\omega t \cos \omega t-\sin \omega t]$ is a solution of the EOM where $R=\frac{q E_{0}}{m \omega^{2}}$ and $\omega=\frac{q B_{z}}{m}$ ω is the Cyclotron frequency
- $(x+R)^{2}+y^{2}=R^{2}\left[(\omega t)^{2}+1\right]$
- $T=\frac{1}{2} m\left[\dot{x}^{2}+\dot{y}^{2}\right]=\frac{1}{2} m R^{2} \omega^{4} t^{2}$
\rightarrow particle accelerator

14.1 Differentiation of vectors wrt time

Vectors follow the rules of differentiation:

- $\frac{d}{d t} \underline{\mathbf{a}}=\frac{d a_{x}}{d t} \underline{\underline{i}}+\frac{d a_{y}}{d t} \underline{\mathbf{j}}+\frac{d \mathbf{a z}_{z}}{d t} \underline{\mathbf{k}}=\dot{a}_{x} \underline{\dot{\underline{x}}}+\dot{a}_{y} \underline{\mathbf{j}}+\dot{a}_{z} \underline{\mathbf{k}}$
- $\frac{d}{d t}(\underline{\mathbf{a}}+\underline{\mathbf{b}})=\frac{d \mathbf{a}}{d t}+\frac{d \mathbf{b}}{d t}=\underline{\dot{\mathbf{a}}}+\underline{\dot{\mathbf{b}}}$
- $\frac{d}{d t}(c \underline{\mathbf{a}})=\frac{d c}{d t} \underline{\mathbf{a}}+c \frac{d \mathbf{a}}{d t}=\dot{c} \underline{\mathbf{a}}+c \underline{\mathbf{a}}$
- $\frac{d}{d t}(\mathbf{a} \cdot \underline{\mathbf{b}})=\frac{d \mathbf{a}}{d t} \cdot \underline{\mathbf{b}}+\underline{\mathbf{a}} \cdot \frac{d \mathbf{b}}{d t}=\underline{\dot{a}} \cdot \underline{\mathbf{b}}+\underline{\mathbf{a}} \cdot \underline{\dot{\mathbf{b}}}$
- $\frac{d}{d t}(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=\frac{d \mathbf{a}}{d t} \times \underline{\mathbf{b}}+\underline{\mathbf{a}} \times \frac{d \mathbf{b}}{d t}=\underline{\dot{\mathbf{a}}} \times \underline{\mathbf{b}}+\underline{\mathbf{a}} \times \underline{\dot{\mathbf{b}}} \quad$ (order is impt.)

Orthogonality of differentiated unit vectors

- $\frac{d}{d t}(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}})=2 \underline{\hat{\hat{r}}} \cdot \frac{d \hat{\mathbf{r}}}{d t}=0 \quad($ since $\underline{\hat{r}} \cdot \hat{\mathbf{r}}=1)$

Therefore $\frac{d \hat{\mathbf{r}}}{d t} \perp \underline{\hat{\mathbf{r}}} \rightarrow \frac{d \hat{\mathbf{r}}}{d t} \propto \underline{\hat{\theta}}$

Derivative of any unit vector gives a vector perpendicular to it.

14.1.1 The position vector in polar coordinates

- $\underline{\mathbf{r}}=r_{0}(\underline{\mathbf{i}} \cos \theta+\underline{\mathbf{j}} \sin \theta)$
$\hat{\mathbf{r}}=(\underline{\mathbf{i}} \cos \theta+\mathbf{j} \sin \theta)$ is a unit vector in the direction of \underline{r}
- $\frac{d \hat{\mathbf{r}}}{d t}=[-\underline{\mathbf{i}} \sin \theta+\underline{\mathbf{j}} \cos \theta] \dot{\theta}$
- $\underline{\hat{\theta}}=(-\underline{\mathbf{i}} \sin \theta+\underline{\mathbf{j}} \cos \theta)$ is a unit vector perpendicular to $\underline{\mathbf{r}}$
- $\underline{\hat{\hat{\mathbf{r}}}}=\dot{\theta} \underline{\hat{\theta}}$ also $\underline{\dot{\hat{\theta}}}=-\dot{\theta} \underline{\hat{\hat{r}}}$

14.1.2 The velocity vector in polar coordinates

- $\underline{\mathbf{r}}=r \underline{\hat{\mathbf{r}}}$

$$
\underline{\mathbf{v}}=\underline{\dot{\mathbf{r}}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \underline{\dot{\hat{\mathbf{r}}}}
$$

- From before $\underline{\dot{\hat{\mathbf{r}}}}=\dot{\theta} \underline{\hat{\theta}}$

General case: $\quad \underline{\mathbf{v}}=\underline{\mathbf{r}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}}$
For circular motion:

- Since $\dot{r}=0$

- $\underline{\mathbf{v}}=r \dot{\theta} \underline{\hat{\theta}}=r \omega \underline{\hat{\theta}}$

14.1.3 The acceleration vector in polar coordinates

- From before $\underline{\mathbf{v}}=\underline{\dot{\mathbf{r}}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}}$
- $\underline{\mathbf{a}}=\dot{\mathbf{v}}=\underline{\underline{\mathbf{r}}}$
$\frac{d}{d t}(\dot{r} \hat{\underline{\hat{r}}})=\ddot{r} \hat{\mathbf{r}}+\dot{r} \dot{\theta} \hat{\theta} \quad($ since $\dot{\hat{\mathbf{r}}}=\dot{\theta} \underline{\theta})$
$\frac{d}{d t}(r \dot{\theta} \underline{\hat{\theta}})=r \dot{\theta} \dot{\dot{\hat{\theta}}}+r \ddot{\theta} \underline{\hat{\theta}}+\dot{r} \dot{\theta} \underline{\hat{\theta}}$
$=-r \dot{\theta}^{2} \underline{\hat{\mathbf{r}}}+r \ddot{\theta} \underline{\hat{\theta}}+\dot{r} \dot{\theta} \underline{\theta}$
(since $\underline{\dot{\hat{\theta}}}=-\dot{\theta} \underline{\hat{\hat{r}}}$)

General case :

$$
\underline{\mathbf{a}}=\ddot{\underline{\ddot{ }}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \underline{\hat{\theta}}
$$

For circular motion:

- Since scalars $\ddot{r}=\dot{r}=\ddot{\theta}=0$ (no change in magnitudes of radius or azimuthal acceleration)
${ }_{33} \underline{\mathbf{a}}=-r \dot{\theta}^{2} \underline{\hat{\mathbf{r}}}=-\omega^{2} r \underline{\hat{\hat{r}}}=-\frac{v^{2}}{r} \underline{\hat{\mathbf{r}}}$

14.2 Angular momentum and torque

- The definition of angular momentum (or the moment of momentum) \mathbf{J} for a single particle: $\underline{\mathbf{J}}=\underline{\mathbf{r}} \times \underline{\mathbf{p}}$
\underline{r} is the displacement vector from the origin and \underline{p} the momentum
- The direction of the angular momentum gives the direction perpendicular to the
 plane of motion
- Differentiate: $\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \frac{d \underline{\mathbf{p}}}{d t}+\frac{d \mathbf{r}}{d t} \times \underline{\mathbf{p}}$
- Definitions of force and velocity: $\underline{\mathbf{F}}=\frac{d \mathbf{p}}{d t}$ and $\underline{\mathbf{v}}=\frac{d \mathbf{r}}{d t}$
- $\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}+\underline{\mathbf{v}} \times \underline{\mathbf{p}} \leftarrow$ this term $=m_{\underline{\mathbf{v}}} \times \underline{\mathbf{v}}=0$
- Define torque $\underline{\tau}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=\frac{d \mathbf{J}}{d t} \quad$ (cf. Linear motion $\underline{\mathbf{F}}=\frac{d \mathbf{p}}{d t}$)
- For multiple forces : $\frac{d \mathbf{J}}{d t}=\sum_{i=1}^{n} \underline{\mathbf{r}}_{i} \times \underline{\mathbf{F}}_{i}=\underline{\tau}_{\text {tot }}$

Torque depends on the origin

- Torque wrt origin O

$$
\underline{\tau}_{o}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}
$$

- Torque wrt point A

$$
\begin{aligned}
\underline{\tau}_{A} & =\underline{\mathbf{r}}_{A} \times \underline{\mathbf{F}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}-\underline{\mathbf{R}} \times \underline{\mathbf{F}} \\
& =\underline{\tau}_{0}-\underline{\mathbf{R}} \times \underline{\mathbf{F}}
\end{aligned}
$$

- Hence in general $\underline{\tau}_{o} \neq \underline{\tau}_{A}$

Same applies to angular momentum : $\underline{\mathbf{J}}_{o} \neq \underline{\mathbf{J}}_{A}$
14.3 Angular velocity $\underline{\omega}$ for rotation in a circle

- Definition of angular velocity :

$$
\dot{\underline{\dot{r}}}=\underline{\omega} \times \underline{\mathbf{r}}
$$

- Note that $\underline{\underline{r}}$ is always $\perp \underline{\underline{r}}$, so $\underline{\omega}$ is defined for circular motion
- Define $\underline{\hat{\mathbf{n}}}$ such that $\underline{\hat{\theta}}=\underline{\hat{\mathbf{n}}} \times \underline{\hat{\hat{r}}}$
- Recall $\underline{\mathbf{v}}=\underline{\dot{\mathbf{r}}}=\dot{r} \underline{\underline{r}}+r \dot{\theta} \underline{\hat{\theta}}$
- For circular motion $\dot{r}=0 ; \dot{\theta}=\omega$ $\rightarrow \underline{\dot{\mathbf{r}}}=\underline{\omega} \times \underline{\mathbf{r}}=(\omega \underline{\hat{\hat{n}}}) \times(r \underline{\hat{\hat{r}}})=r \omega \underline{\hat{\theta}}$
Relationship between $\underline{\mathbf{J}}$ and $\underline{\omega}$
- $\underline{\mathbf{J}}=\underline{\mathbf{r}} \times \underline{\mathbf{p}}=m \underline{\mathbf{r}} \times \underline{\dot{\mathbf{r}}}=m \underline{\mathbf{r}} \times(\underline{\omega} \times \underline{\mathbf{r}})$
- Recall vector identity $\underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}})=(\underline{\mathbf{a}} . \underline{\mathbf{c}}) \underline{\mathbf{b}}-(\underline{\mathbf{a}} . \underline{\mathbf{b}}) \underline{\mathbf{c}}$
- $\underline{\mathbf{J}}=m r^{2} \underline{\omega}-m(\underline{\mathbf{r}} \cdot \underline{\omega}) \underline{\mathbf{r}}$
- $\underline{\mathbf{r}} \cdot \underline{\omega}=0$ since the circular rotation is in a plane
- Hence $\underline{\mathbf{J}}=\mathrm{I} \underline{\omega}$ where $\mathrm{I}=m r^{2} ;\left(\right.$ generally $\left.\mathrm{I}=\sum_{i}\left[m_{i} r_{i}^{2}\right]\right)$

15.1 Angular acceleration $\underline{\alpha}$ for rotation in a circle

Angular velocity for rotation in a circle : $\underline{\dot{\dot{r}}}=\underline{\omega} \times \underline{\mathbf{r}}$

- $\underline{\omega}=\omega \underline{\hat{\mathbf{n}}}=\dot{\theta} \underline{\hat{\mathbf{n}}}$
- Angular acceleration:

$$
\underline{\alpha}=\underline{\dot{\omega}}
$$

Special case if $\underline{\alpha}$ is constant \rightarrow

- $\frac{d \omega}{d t}=\alpha \rightarrow \omega=\omega_{0}+\alpha t$
- $\frac{d \theta}{d t}=\omega \rightarrow \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$

Which should be recognisable equations!

Relationship between $\underline{\tau}$ and $\underline{\alpha}$ for rotation in a circle

$$
\underline{\tau}=\frac{d}{d t} \underline{\mathbf{J}}=\mathrm{I} \underline{\alpha}
$$

15.2 Angular motion : work and power

- Work linear motion :

$$
\begin{aligned}
& d W=\underline{\mathbf{F}} \cdot d \underline{\mathbf{s}} \\
& \rightarrow \quad W=\int \underline{\mathbf{F}} \cdot d \underline{\mathbf{s}}
\end{aligned}
$$

- Work angular motion :

$$
\begin{aligned}
& \underline{\tau}=\underline{\mathbf{r}} \times \underline{\mathbf{F}} \\
& \begin{array}{l}
d \underline{\mathbf{s}}= \\
d \underline{\theta} \times \underline{\mathbf{r}} \quad(d \underline{\theta} \text { out of page }) \\
d W=\underline{\mathbf{F}} \cdot d \underline{\mathbf{s}}=\underline{\mathbf{F}} \cdot(d \underline{\theta} \times \underline{\mathbf{r}}) \\
\quad=(\underline{\mathbf{r}} \times \underline{\mathbf{F}}) \cdot d \underline{\theta} \\
\quad(\text { scalar triple product }) \\
\quad W=\int \underline{\tau} d \underline{\theta}=\int \underline{\tau} \cdot \underline{\omega} d t
\end{array}
\end{aligned}
$$

- Power:

Linear motion : $P=\underline{\mathbf{F}} \cdot \underline{\mathbf{v}}$

Rotational motion : $P=\underline{\tau} \cdot \underline{\omega}$

15.3 Correspondence between linear and angular quantities

 Linear quantities are re-formulated in a rotating frame:| Linear/ translational quantities | Angular/ rotational quantities |
| :--- | :--- |
| Displacement, position: $\underline{\mathbf{r}}[\mathrm{m}]$ | Angular displacement, angle: θ [rad] |
| Velocity: $\underline{\mathbf{v}}\left[\mathrm{m} \mathrm{s}^{-1}\right]$ | Angular velocity: $\underline{\omega}\left[\mathrm{rad} \mathrm{s}{ }^{-1}\right]$ |
| Acceleration: $\underline{\mathbf{a}}\left[\mathrm{m} \mathrm{s}^{-2}\right]$ | Angular acceleration: $\underline{\alpha}\left[\mathrm{rad} \mathrm{s}^{-2}\right]$ |
| Mass $m[\mathrm{~kg}]$ | Moment of inertia: $\mathrm{I}\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{rad}^{-1}\right]$ |
| Momentum: $\underline{\mathbf{p}}\left[\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}\right.$ | Angular momentum: $\underline{\mathbf{J}}\left[\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}\right]$ |
| Force $\underline{\mathbf{F}}[\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}$ | |
| Weight $F_{g}[\mathrm{~N}]$ | Torque: $\underline{\tau}\left[\mathrm{kg} \mathrm{m} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{rad}^{-1}\right]$ |
| Work $d W=F \cdot d x[\mathrm{~N} \mathrm{~m}]$ | Work $W=\tau \cdot d \theta[\mathrm{~N} \mathrm{~m}]$ |

15.3.1 Reformulation of Newton's laws for angular motion

1. In the absence of a net applied torque, the angular velocity remains unchanged.
2. Torque $=$ [moment of inertia] \times [angular acceleration $]$
$\underline{\tau}=\mathrm{I} \underline{\alpha}$
This expression applies to rotation about a single principal axis, usually the axis of symmetry. (cf. $\underline{\mathbf{F}}=$ ma \mathbf{a}. . More on moment of inertia comes later.
3. For every applied torque, there is an equal and opposite reaction torque. (A result of Newton's 3rd law of linear motion.)

15.3.2 Example: the simple pendulum

Derive the EOM of a simple pendulum using angular variables:

- $\underline{\tau}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=-m g r \sin \theta \underline{\hat{\mathbf{z}}}$
- $\underline{\mathbf{J}}=\underline{\mathbf{r}} \times m \underline{\mathbf{v}}=m r v \underline{\hat{\mathbf{z}}}$
- $v=r \dot{\theta} \rightarrow \dot{v}=r \ddot{\theta}$
- $\frac{d \mathbf{J}}{d t}=m r \dot{v} \underline{\hat{\mathbf{z}}}=\left(m r^{2} \ddot{\theta}\right) \underline{\hat{\mathbf{z}}}$
(since $\underline{\underline{\hat{z}}}$ is a constant vector)
- $\frac{d \mathbf{J}}{d t}=\underline{\tau} \rightarrow m r^{2} \ddot{\theta}=-m g r \sin \theta$

- $\ddot{\theta}+\frac{g}{r} \sin \theta=0$

15.4 Moments of forces

Simple example : ladder against a wall

- If no slipping, torques (moments) must balance
- About any point:

$$
\sum_{i=1}^{n} \underline{\mathbf{r}}_{i} \times \underline{\mathbf{F}}_{i}=\underline{\tau}_{\text {tot }}=0
$$

- Moments about O
$m g \frac{L}{2} \cos \theta=N_{2} L \sin \theta$
- Also balance of forces in equilibrium $m g=N_{1}$ and $F_{s}=\mu N_{1}=N_{2}$

General case: body subject to gravity. Total moment :

- $\underline{\mathbf{M}}=\int_{V} \underline{\mathbf{r}} \times \underline{\mathbf{g}} \rho d V$ mass term $+\sum_{i=1}^{n} \underline{\mathbf{r}}_{i} \times \underline{\mathbf{F}}_{i} \quad$ external forces
$-\int_{S} \underline{\mathbf{r}} \times(p \underline{\mathbf{n}} d S)$ surface pressure

15.5 Central forces

- Central force: $\underline{\mathbf{F}}$ acts towards origin (line joining O and P) always.
- $\underline{\mathbf{F}}=f(r) \underline{\hat{\hat{~}}}$ only
- Examples:

Gravitational force $\mathbf{F}=-\frac{G m M}{r^{2}} \hat{\mathbf{r}}$

Electrostatic force $\quad \underline{\mathbf{F}}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{\mathbf{r}}$

15.5.1 A central force is conservative

A force $\underline{\mathbf{F}}$ is conservative if it meets 3 equivalent conditions:

1. The curl of $\underline{\boldsymbol{F}}$ is zero: $\nabla \times \underline{\mathbf{F}}=0$
2. Work over closed path $W \equiv \oint_{C} \mathbf{F} \cdot d \underline{\mathbf{r}}=0$, independent of path
3. $\underline{\mathbf{F}}$ can be written in terms of scalar potential $\underline{\mathbf{F}}=-\nabla U$

- Equivalence of $1 \& 2$ from Stokes' theorem

$$
\int_{S}(\nabla \times \underline{\mathbf{F}}) \cdot \mathrm{d} \underline{\mathbf{a}}=\oint_{C} \underline{\mathbf{F}} \cdot \mathrm{dr}=0
$$

- Equivalence of $1 \& 3$ from vector calculus identity :

$$
\nabla \times(\nabla U)=0
$$

For a central potential, take the grad of $U(r)$:

- In cartesians $\nabla U(r)=\frac{\partial U\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)}{\partial x} \underline{\hat{\mathbf{x}}}+\ldots$ ($\underline{\hat{\mathbf{y}}}$ and $\underline{\hat{\mathbf{z}}}$ terms)
- Chain rule $\frac{\partial U}{\partial x}=\frac{\partial U}{\partial r} \frac{\partial r}{\partial x}: \quad \nabla U(r)=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{\partial U(r)}{\partial r} \hat{\underline{x}}+\ldots$
- Since $\frac{x \hat{\underline{\mathbf{x}}}+y \underline{\hat{\mathbf{y}}}+z \underline{\underline{\mathbf{z}}}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\underline{\hat{\mathbf{r}}} \rightarrow-\nabla U(r)=-\frac{\partial U(r)}{\partial r} \underline{\hat{\mathbf{r}}} \equiv f(r) \underline{\hat{\mathbf{r}}}=\underline{\mathbf{F}}(\underline{\mathbf{r}})$

The grad of the scalar potential has only one non-vanishing component which is along $\underline{\hat{\hat{r}}}$ (\rightarrow central force). Hence condition (3) is satisfied \rightarrow central force is conservative force.

16.1 Central force : the equation of motion

- Recall the acceleration in polar coordinates

$$
\underline{\mathbf{a}}=\underline{\ddot{\mathbf{r}}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \underline{\hat{\theta}}
$$

- If $\underline{\mathbf{F}}=f(r) \underline{\hat{\mathbf{r}}}$ only, then $F_{\theta}=0$

$$
\begin{aligned}
& \rightarrow F_{\theta}=m(2 \dot{r} \dot{\theta}+r \ddot{\theta})=0 \\
& \rightarrow F_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right)=f(r)
\end{aligned}
$$

- Consider $\frac{d}{d t}\left(r^{2} \dot{\theta}\right)=2 r \dot{r} \dot{\theta}+r^{2} \ddot{\theta}$ Hence $\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=0$
$\rightarrow\left(r^{2} \dot{\theta}\right)=$ constant of motion

- The angular momentum in the plane:
$\underline{\mathbf{J}}=m \underline{\mathbf{r}} \times \underline{\mathbf{v}}=m \underline{\mathbf{r}} \times(\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}})=\left(m r^{2} \dot{\theta}\right) \underline{\hat{\mathbf{n}}}$ where $\underline{\mathbf{r}} \times \underline{\hat{\mathbf{r}}}=0$ and $\underline{\hat{\mathbf{n}}}=\underline{\hat{\mathbf{r}}} \times \underline{\hat{\theta}}$
- Torque about origin : $\underline{\tau}=\frac{d \mathbf{J}}{d t}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=0$ ($\underline{\mathbf{F}}$ acts along $\underline{\mathbf{r}}$) Angular momentum vector is a constant of the motion

16.2 Motion under a central force

16.2.1 Motion in a plane

- $\underline{\mathbf{J}}=m \underline{\mathbf{r}} \times \underline{\mathbf{v}}$
- Angular momentum is always perpendicular to $\underline{\underline{r}}$ and \underline{v}
- $\underline{\mathbf{J}}$ is a constant vector ; $\underline{\mathbf{J}} \cdot \underline{\mathbf{r}}=0 ; \underline{\mathbf{J}} \cdot \underline{\mathbf{v}}=\mathbf{0}$

Motion under a central force lies in a plane

16.2.2 Sweeping out equal area in equal time

- Central force example : planetary motion : $\left|\underline{\mathbf{F}}_{r}\right|=\frac{G M m}{r^{2}}$
- Angular momentum is conserved
$\rightarrow|\underline{\mathbf{J}}|=m r^{2} \dot{\theta}=$ constant

- $d A \approx \frac{1}{2} r^{2} d \theta$
- $\frac{d A}{d t}=\frac{1}{2} r^{2} \dot{\theta}$
$\frac{d A}{d t}=\frac{J}{2 m}=$ constant $\quad\left(\right.$ Kepler $2^{\text {nd }}$ Law)
Orbit sweeps out equal area in equal time

16.3 Central force : the total energy

- Total energy $=$ kinetic + potential :
$E=T+U(r)=\frac{1}{2} m v^{2}+U(r)=$ constant
- $\underline{\mathbf{v}}=\dot{r} \underline{\hat{r}}+r \dot{\theta} \underline{\theta} \rightarrow|\underline{\mathbf{v}}|^{2}=(\underline{\hat{\mathbf{r}}}+r \dot{\theta} \dot{\hat{\theta}}) \cdot(\underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}})$
$\rightarrow|\underline{\mathbf{v}}|^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2} \quad($ since $\underline{\hat{r}} \cdot \underline{\hat{\theta}}=0)$
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}+U(r)$
- No external torque: angular momentum is conserved $\rightarrow|\underline{\mathbf{J}}|=m r^{2} \dot{\theta}=$ constant

$$
E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)
$$

- Potential energy for a central force

$$
U(r)=-\int_{r_{r e f}}^{r} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=-\int_{r_{r e f}}^{r} f(r) d r
$$

16.3.1 The potential term (inverse square interaction)

- $\underline{\mathbf{F}}=-\frac{A}{r^{2}} \hat{\underline{\hat{}}} \rightarrow f(r)=-\frac{A}{r^{2}}$
[Attractive force for $A>0 \rightarrow$
signs are important !]
- $U(r)=-\int_{r_{\text {ref }}}^{r} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}$

$$
=-\int_{r_{\text {ref }}}^{r} f(r) d r
$$

- $U(r)=-\frac{A}{r}+\frac{A}{r_{\text {ref }}}$

Usual to define $U(r)=0$ at
 $r_{r e f}=\infty$

$$
\rightarrow U(r)=-\frac{A}{r}
$$

Newton law of gravitation : $\underline{\mathbf{F}}=-\frac{G M m}{r^{2}} \underline{\hat{\mathbf{~}}} \rightarrow U(r)=-\frac{G M m}{r}$

16.3.2 Example

A projectile is fired from the earth's surface with speed v at an angle α to the radius vector at the point of launch. Calculate the projectile's subsequent maximum distance from the earth's surface. Assume that the earth is stationary and its radius is a.

16.3.2 Example : solution

- $U(r)=-\frac{G M m}{r}$
- $|\underline{\mathbf{J}}|=m|\underline{\mathbf{r}} \times \underline{\mathbf{v}}|=\operatorname{mav} \sin \alpha$
- Energy equation: $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)$
$\rightarrow E=\frac{1}{2} m \dot{r}^{2}+\frac{m a^{2} v^{2} \sin ^{2} \alpha}{2 r^{2}}-\frac{G M m}{r}$
- At $r=a: E=\frac{1}{2} m v^{2}-\frac{G M m}{a}$. At maximum height : $\dot{r}=0$ $\rightarrow \frac{1}{2} m v^{2}-\frac{G M m}{a}=\frac{m a^{2} v^{2} \sin ^{2} \alpha}{2 r_{\text {max }}^{2}}-\frac{G M m}{r_{\text {max }}}$
$\rightarrow\left(v^{2}-\frac{2 G M}{a}\right) r_{\text {max }}^{2}+2 G M r_{\text {max }}-a^{2} v^{2} \sin ^{2} \alpha=0$
- Solve and take the positive root
- Note from Equ.(1) : When $\dot{r} \rightarrow 0$ as $r_{\text {max }} \rightarrow \infty$, the rocket just escapes the earth's gravitational field

$$
\text { i.e. } \frac{1}{2} m v^{2}-\frac{G M m}{a} \rightarrow 0, v_{\text {esc }}=\sqrt{\frac{2 G M}{a}} \text { (independent of } \alpha \text {) }
$$

17.1 Effective potential

- Energy equation : $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)$
- Define effective potential : $U_{\text {eff }}(r)=\frac{J^{2}}{2 m r^{2}}+U(r)$
\rightarrow then $E=\frac{1}{2} m \dot{r}^{2}+U_{\text {eff }}(r)$
- Note this has the same form as a 1-D energy expression : $\rightarrow E=\frac{1}{2} m \dot{x}^{2}+U(x)$
\rightarrow the analysis becomes 1-D-like problem since $J=$ const
- Allows to predict important features of motion without solving the radial equation
$\rightarrow \frac{1}{2} m r^{2}=E-U_{\text {eff }}(r) \leftarrow$ LHS is always positive
$\rightarrow U_{\text {eff }}(r)<E$
The only locations where the particle is allowed to go are those with $U_{\text {eff }}(r)<E$

17.1.1 $U_{\text {eff }}(r)$ for inverse square law

- $U_{\text {eff }}(r)=\frac{J^{2}}{2 m r^{2}}-\frac{G m M}{r}$
- $U_{\text {eff }}(r)<E_{\text {tot }}$ for all r

Three cases :

- $E_{\text {tot }}<0$: Bound (closed) orbit with $r_{1}<r<r_{2}$
- $E_{\text {tot }}$ has minimum energy at $r=r_{0}$: $\frac{d U_{\text {eft }}}{d r}=0$, circular motion with $\dot{r}=0$
- $E_{\text {tot }}>0$: Unbound (open) orbit with

$$
r>r_{3}
$$

17.2 Examples

17.2.1 Example 1 : 2-D harmonic oscillator

- $\underline{\mathbf{F}}=-k \underline{\underline{\underline{r}}}$ (ignore the natural length of the spring)
- Energy equation : $E=\frac{1}{2} m \dot{r}^{2}+U_{\text {eff }}(r)$
- $U_{\text {eff }}(r)=\frac{J^{2}}{2 m r^{2}}+\frac{1}{2} k r^{2}$
- For circular motion $\dot{r}=0$: $E_{\text {min }}$ when $\left.\frac{\partial U_{\text {eff }}}{\partial r}\right|_{r_{0}}=0$
$\rightarrow-\frac{J^{2}}{m r_{0}^{3}}+k r_{0}=0$
where $J=m v_{0} r_{0}$
- Leads to $\frac{m v_{0}^{2}}{r_{0}}=k r_{0}$ as expected

Including the natural length:

- $\underline{\mathbf{F}}=-k \underline{\mathbf{r}} \rightarrow \underline{\mathbf{F}}=-k(\underline{\mathbf{r}}-\underline{\mathbf{a}})$
- $U=\frac{1}{2} k r^{2} \rightarrow U=\frac{1}{2} k(r-a)^{2}$

Leads to $\frac{m v_{0}^{2}}{r_{0}}=k\left(r_{0}-a\right)$

Example continued

- $U_{\text {eff }}(r)=\frac{J^{2}}{2 m r^{2}}+\frac{1}{2} k r^{2}$
- For general motion :
- $\underline{\mathbf{F}}=-k \underline{\mathbf{r}}$
$\rightarrow m \ddot{x}=-k x$
$\rightarrow m \ddot{y}=-k y$
- Solution for B.C's at $t=0$:
$x=r_{2}, y=0, \dot{x}=0$
$\rightarrow x=r_{2} \cos \omega t$
$\rightarrow y=r_{1} \sin \omega t$
where $\omega^{2}=\frac{k}{m}$
- Ellipse: $\left(\frac{x}{r_{2}}\right)^{2}+\left(\frac{y}{r_{1}}\right)^{2}=1$

17.2.2 Example 2 : Rotating ball on table

Two particles of mass m are connected by a light inextensible string of length ℓ. The particle on the table starts at $t=0$ at a distance $\ell / 2$ from the hole at a speed v_{0} perpendicular to the string. Find the speed at which the particle below the table falls.

- Energy equation :
$E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+U(r)$
- $\dot{y}=\dot{r}, U(r)=-m g y$
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m \dot{y}^{2}+$

$$
+\frac{J^{2}}{2 m r^{2}}-m g(\ell-r)
$$

m

- At $t=0: J=\frac{m v_{0} \ell}{2}, E=\frac{1}{2} m v_{0}^{2}-m g \frac{\ell}{2}$
- Solution : $\dot{r}^{2}=\frac{g \ell+v_{0}^{2}}{2}-\frac{\left(\ell v_{0}\right)^{2}}{8} \frac{1}{r^{2}}-g r$.

Condition for the particle on the table to move in circular motion $\rightarrow \dot{r}=0$, Equate forces $\frac{m v_{0}^{2}}{\ell / 2}=m g \rightarrow$ gives $\frac{v_{0}^{2}}{g \ell}=\frac{1}{2}$

Example 2 continued : effective potential

- Effective potential : $U_{\text {eff }}=\frac{J^{2}}{2 m r^{2}}-m g(\ell-r)$
- Closed orbit with $r_{\text {min }}<r<\ell / 2$
- Ball never passes though hole in absence of friction, minimum radius $r=r_{\text {min }}$

18.1 The orbit equation

Note that the derivation of this is off syllabus

- Acceleration in polar coordinates

$$
\underline{\mathbf{a}}=\ddot{\mathbf{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\hat{\mathbf{r}}}+\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right) \underline{\hat{\theta}}
$$

- If $\underline{\mathbf{F}}=f(r) \underline{\hat{\mathbf{r}}}$ only, then $F_{\theta}=0 . J=m r^{2} \dot{\theta}=$ constant.

$$
\left.\rightarrow F_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right)=-\frac{\alpha}{r^{2}} \quad \text { (gravitational force, } \alpha=G m M\right)
$$

- Hence $\ddot{r}=\frac{J^{2}}{m^{2} r^{3}}-\frac{\alpha}{m r^{2}}=\frac{u^{3} J^{2}}{m^{2}}-\frac{u^{2} \alpha}{m} \quad\left(\right.$ where $u=\frac{1}{r}$)
- $\dot{r}=\frac{d \theta}{d t} \frac{d r}{d \theta}=\frac{J}{m r^{2}} \frac{d r}{d \theta}=-\frac{J}{m} \frac{d(1 / r)}{d \theta}=-\frac{J}{m} \frac{d u}{d \theta}$
- $\ddot{r}=\frac{d}{d t}(\dot{r})=\frac{d \theta}{d t} \frac{d}{d \theta}\left(-\frac{J}{m} \frac{d u}{d \theta}\right)=-\left(\frac{J^{2}}{m^{2}} u^{2}\right) \frac{d^{2} u}{d \theta^{2}}$
- Substituting in Eq (1): $-\left(\frac{J^{2}}{m^{2}}\right) u^{2} \frac{d^{2} u}{d \theta^{2}}=\frac{u^{3} J^{2}}{m^{2}}-\frac{u^{2} \alpha}{m}$

$$
\rightarrow \frac{d^{2} u}{d \theta^{2}}=-u+\frac{m \alpha}{J^{2}} \rightarrow \quad \frac{d^{2} u}{d \theta^{2}}=-u+\frac{1}{r_{0}} \quad\left(r_{0}=\frac{J^{2}}{m \alpha}\right)
$$

The orbit equation continued

$$
\frac{d^{2} u}{d \theta^{2}}=-u+\frac{1}{r_{0}} \quad \text { where } u=\frac{1}{r} \text { and } \quad r_{0}=\frac{J^{2}}{m \alpha}
$$

- Solution is $\frac{1}{r}=\frac{1}{r_{0}}+C \cos \left(\theta-\theta_{0}\right)$ where $C, \theta_{0}=$ constants

$$
r(\theta)=\frac{r_{0}}{1+e \cos \left(\theta-\theta_{0}\right)} \quad e=\text { eccentricity } \quad\left(e=C r_{0}\right)
$$

- This is in the form of an ellipse ${ }^{\dagger}$. Also have a link between angular momentum and the ellipse geometry ($J^{2}=m \alpha r_{0}$).
\dagger More precisely a conic section, which includes hyperbola, parabola and circle.
- Choose major axis as x axis $\rightarrow \theta_{0}=0$
- $r(\theta)=\frac{r_{0}}{1+e \cos \theta}$
- Equivalent form of ellipse : $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$
- $b=a \sqrt{\left(1-e^{2}\right)}$
$-\boldsymbol{a}=\frac{r_{0}}{\left(1-e^{2}\right)}$

18.1.1 The ellipse geometry

Example of a rotating planet : the sun is at the ellipse focus F

$$
r(\theta)=\frac{r_{0}}{1+e \cos \theta}
$$

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

- Closest approach $\theta=0$ "perigee" $r_{\text {min }}=\frac{r_{0}}{1+e}$
Furthest approach $\theta=\pi$ "apogee" $r_{\text {max }}=\frac{r_{0}}{1-e}$ ($\dot{r}=0$ in both cases)
- $r_{\text {max }}+r_{\text {min }}=2 a=\frac{2 r_{0}}{1-e^{2}}$

$$
\begin{aligned}
& \rightarrow \quad r_{0}=a\left(1-e^{2}\right) \\
& \rightarrow x_{c}+r_{\text {min }}=a \rightarrow x_{c}+\frac{r_{0}}{1+e}=a \\
& \quad \rightarrow \quad x_{c}=a-a(1-e) \xrightarrow{=} a e
\end{aligned}
$$

- At point $A, r^{2}=x_{c}^{2}+b^{2} ; \cos \theta=-\frac{x_{c}}{r} ; r=\frac{r_{0}}{1-e x_{c} / r}$
$\rightarrow\left(r_{0}+e x_{c}\right)^{2}=x_{c}^{2}+b^{2} \rightarrow\left(a\left(1-e^{2}\right)+e^{2} a\right)^{2}=e^{2} a^{2}+b^{2}$

$$
b=a \sqrt{\left(1-e^{2}\right)} \text { also } r_{\min }=a(1-e) \& r_{\max }=a(1+e)
$$

18.2 Kepler's Laws

- KI: "The orbit of every planet is an ellipse with the sun at one of the foci". [Already derived]
- KII: "A line joining a planet and the sun sweeps out equal areas during equal intervals of time". [Already derived]
- KIII: "The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits".

18.2.1 Kepler III

"The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits"

This is trivial for a circle :

$$
\begin{aligned}
& \rightarrow m r_{0} \omega^{2}=m r_{0}\left(\frac{2 \pi}{T}\right)^{2}=\frac{G m M}{r_{0}^{2}} \\
& \rightarrow r_{0}^{3}=T^{2} \frac{G M}{4 \pi^{2}}
\end{aligned}
$$

For an ellipse:

- $\frac{d A}{d t}=\frac{1}{2} r^{2} \dot{\theta}=\frac{J}{2 m}=$ constant
- Integrate $A=\int_{0}^{T} \frac{J}{2 m} d t \rightarrow A^{2}=\left(\frac{J}{2 m}\right)^{2} T^{2}$
- From before : $r_{0}=a\left(1-e^{2}\right), b=a \sqrt{\left(1-e^{2}\right)} \rightarrow a=\frac{b^{2}}{r_{0}}$
- Area of an ellipse : $A=\pi a b \rightarrow A^{2}=\pi^{2} a^{3} r_{0}$
- Putting it all together $\rightarrow T^{2} \propto a^{3}$

18.2.2 Planetary data

Kepler-III"The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits"

- IMPRESSIVE!

18.3 Elliptical orbit via energy $\left(E_{\min }<E<0\right)$

- $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- At turning points

$$
\dot{r}=0 \rightarrow r=r_{\text {min }} \text { or } r=r_{\text {max }}
$$

- $E=\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$

$$
\rightarrow r^{2}+\frac{\alpha}{E} r-\frac{J^{2}}{2 m E}=0
$$

$$
\rightarrow r=-\frac{\alpha}{2 E} \pm\left[\left(\frac{\alpha}{2 E}\right)^{2}+\frac{J^{2}}{2 m E}\right]^{\frac{1}{2}}
$$

$-r_{\text {min }, \max }=-\left(\frac{\alpha}{2 E}\right)[1 \pm \underbrace{\left(1+\frac{2 E J^{2}}{m \alpha^{2}}\right)^{\frac{1}{2}}}_{\mathrm{e}}]$

$$
r_{\max }=\underbrace{-\frac{\alpha}{2 E}(1+e)}_{=\mathrm{a}(1+\mathrm{e})}, r_{\text {min }}=\underbrace{-\frac{\alpha}{2 E}(1-e)}_{=\mathrm{a}(1-\mathrm{e})}
$$

Consistent with the orbit equations. NICE!

Also:

$$
\begin{aligned}
& \left.\left(1+\frac{2 E J^{2}}{m \alpha^{2}}\right)^{\frac{1}{2}}\right)=e \\
& E=\frac{m \alpha^{2}}{2 J^{2}}\left(e^{2}-1\right) \\
& \quad=\frac{\alpha}{2 r_{0}}\left(e^{2}-1\right) \\
& \text { where } r_{0}=\frac{J^{2}}{m \alpha} \text { and }
\end{aligned}
$$

$e=$ eccentricity of ellipse.

Elliptical orbit via energy, continued

$$
r(\theta)=\frac{r_{0}}{1+e \cos \theta}
$$

Total energy in ellipse parameters

$$
E=\frac{\alpha}{2 r_{0}}\left(e^{2}-1\right)
$$

- $e=0, r=r_{0}, E=-\frac{\alpha}{2 r_{0}}$
\rightarrow motion in a circle
- If $0<e<1, E<0$
\rightarrow motion is an ellipse
- If $e=1, E=0$

$$
r(\theta)=\frac{r_{0}}{1+\cos \theta}
$$

\rightarrow motion is a parabola

- If $e>1, E>0$
\rightarrow motion is a hyperbola

- Mistake is made in boosting a satellite, at radius R, into circular orbit : magnitude of velocity is right but direction is wrong.
- Intended to apply thrust to give velocity v_{0} along circular orbit.
- Instead thrust at angle θ wrt direction of motion.
- Energy of orbit is right, angular momentum is wrong.

Initial circular orbit

What is the perigee and apogee of the resulting orbit? (Points $B \& C$)

- Conservation of angular momentum, points $A \& B$

$$
J=m v_{0} R \sin \left(\frac{\pi}{2}-\theta\right)=m v_{B} r_{B}
$$

- Energy at $A=$ energy at perigee B

$$
\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{R}=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

where $\alpha=G M m$

19.1 Example continued

- At point $B, \dot{r}=0$, energy conservation becomes

$$
\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{R}=\frac{m^{2} v_{0}^{2} R^{2} \cos ^{2} \theta}{2 m r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

- Equate forces for circular motion to get v_{0} :

$$
\frac{m v_{0}^{2}}{R}=\frac{\alpha}{R^{2}} \rightarrow v_{0}^{2}=\frac{\alpha}{m R}
$$

- Sub for v_{0}^{2} : energy conservation becomes

$$
\frac{\alpha}{2 R}-\frac{\alpha}{R}=\frac{\alpha R \cos ^{2} \theta}{2 r_{B}^{2}}-\frac{\alpha}{r_{B}}
$$

- $-\frac{1}{2 R}=\frac{R \cos ^{2} \theta}{2 r_{B}^{2}}-\frac{1}{r_{B}}$
- $\left(\times 2 R r_{B}^{2}\right) \rightarrow r_{B}^{2}-2 R r_{B}+R^{2} \cos ^{2} \theta=0$
- $r_{B}=R-\sqrt{R^{2}-R^{2} \cos ^{2} \theta}$, also $r_{C}=R+\sqrt{R^{2}-R^{2} \cos ^{2} \theta}$
- $r_{B}=R(1-\sin \theta) \quad$ Perigee
$r_{C}=R(1+\sin \theta) \quad$ Apogee
19.1.1 Orbits with the same energy

19.2 Impulse leaving angular momentum unchanged

- Example: A satellite in circular orbit has been given an impulse leaving J unchanged. The kinetic energy is changed by $T=\beta T_{0}$. Describe the subsequent motion.
- If J is not changed, impulse must be perpendicular to the direction of motion, with angular part of the velocity unchanged.
- $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- Circular orbit:

$$
\begin{align*}
& \rightarrow \dot{r}=0, J=m r_{0} v_{0} \tag{1}\\
& \rightarrow E_{\text {initial }}=\frac{1}{2} m v_{0}^{2}-\frac{\alpha}{r_{0}}
\end{align*}
$$

- Equate forces:
$\rightarrow \frac{m v_{0}^{2}}{r_{0}}=\frac{\alpha}{r_{0}^{2}}$
$\rightarrow v_{0}^{2}=\frac{\alpha}{m r_{0}}$

19.2 Example continued

- New orbit (elliptical): $E_{\text {new }}=\frac{1}{2} \beta m v_{0}^{2}-\frac{\alpha}{\tau_{0}}$
- Equate energies: subsequent motion described by:
- $\frac{1}{2} \beta m v_{0}^{2}-\frac{\alpha}{r_{0}}=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{\alpha}{r}$
- Now solve for $r_{\text {min }}, r_{\text {max }}$. Set $\dot{r}=0$
- From (1), (2), (3) $\rightarrow(\beta-2) r^{2}+2 r_{0} r-r_{0}^{2}=0$
- $r_{\text {min,max }}=\frac{-r_{0} \pm \sqrt{r_{0}^{2}+(\beta-2) r_{0}^{2}}}{(\beta-2)}$
- Example: $\beta=1.001 \rightarrow r_{\text {max }}=1.033 r_{0} r_{\text {min }}=0.968 r_{0}$

Changes in orbit as a result of impulse

19.2.1 Orbits with the same angular momentum

- $E_{\text {ellipse }}=-\frac{\alpha}{2 a}$
- $E_{\text {circle }}=-\frac{\alpha}{2 r_{0}}$

19.3 Mutual orbits

- The two bodies make a mutual elliptical orbit on either side of the C of M (origin) in a straight line through the C of M
- Relative position vector : $\underline{\underline{r}}=\underline{\mathbf{r}}_{2}-\underline{\mathbf{r}}_{1}$
- Definition of C of M about O : $m_{1} \underline{\mathbf{r}}_{1}+m_{2} \underline{\mathbf{r}}_{2}=0$

Mutual orbits continued

- Internal forces: $\underline{\mathbf{F}}_{12}=m_{1} \underline{\underline{\underline{u}}}_{1} \quad, \quad \underline{\mathbf{F}}_{21}=m_{2} \ddot{\underline{\underline{m}}}_{2}$

Then $\quad \ddot{\underline{i}}=\ddot{\underline{r}}_{2}-\ddot{\underline{r}}_{\mathbf{1}}=\frac{\mathbf{F}_{21}}{m_{2}}-\frac{\mathbf{F}_{12}}{m_{1}}$
But $\quad \underline{F}_{12}=-\underline{F}_{21}$

- Hence $\quad \ddot{\mathbf{r}}=\underline{\mathbf{F}}_{\mathbf{2 1}}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)$
- Define $\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \quad \rightarrow \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ μ is the reduced mass of the system
- Hence $\mu \underline{\ddot{\mathbf{r}}}=\underline{\mathbf{F}}_{21}$
and $\mu \ddot{\mathbf{r}}=-\frac{G m_{1} m_{2}}{\left|\underline{\underline{r}}_{2}-\underline{\mathbf{r}}_{1}\right|^{2}} \hat{\underline{\hat{}}}=-\frac{G \mu\left(m_{1}+m_{2}\right)}{\left|\underline{\mathbf{r}}_{2}-\underline{\mathbf{r}}_{1}\right|^{2}} \hat{\underline{\hat{r}}}$
- Therefore Newton's Second Law for mutual motion can be re-written in terms of the position of the second body with respect to the first. The second body has the reduced mass which orbits round the first body with an effective mass equal to the sum of the two masses.

19.3.1 Example: binary star

A binary star consists of two stars bound together by gravity moving in roughly opposite directions along a nearly circular orbit. The period of revolution of the starts about their centre of mass is 14.4 days and the speed of each component is $220 \mathrm{~km} \mathrm{~s}^{-1}$. Find the distance between the two stars and their masses.

- For single star: $v=\left(\frac{r}{2}\right) \omega=\frac{r}{2} \frac{2 \pi}{T}$

- $r=\frac{v T}{\pi}=8.7 \times 10^{10} \mathrm{~m}$
- Mutual motion : $\mu\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{\mathbf{r}}=-\frac{G m_{1} m_{2}}{r^{2}} \underline{\underline{\hat{r}}}$
- For circular motion :

$$
\ddot{r}=\dot{r}=0, \quad r \dot{\theta}^{2}=\text { constant }=r \omega^{2}
$$

- Equating forces:

$$
r \mu \omega^{2}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{G \mu\left(m_{1}+m_{2}\right)}{r^{2}}
$$

- $\left(m_{1}+m_{2}\right)=\frac{r^{3} \omega^{2}}{G} ; m_{1}=m_{2}$ (symmetry)
- $m_{1}=m_{2}=1.25 \times 10^{32} \mathrm{~kg}$

