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Programme for Hilary term (20 lectures)

I Lectures 1-5

Rocket motion. Motion in B and E fields
I Lectures 6-10

Central forces (orbits)
I Lectures 11-15

Rotational dynamics (rigid body etc)
I Lectures 16-20

Lagrangian dynamics

I Plus 4 problem sets for your enjoyment
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11.1 Variable mass : a body acquiring mass
I A body of mass m has velocity v . In

time δt it it acquires mass δm, which
is moving along v direction with
velocity u

I The change in mass m is m + δm,
the change in velocity v is v + δv

I Case 1: No external force. Change of momentum ∆p

∆p = (m + δm)(v + δv)︸ ︷︷ ︸
After

− (mv + uδm)︸ ︷︷ ︸
Before

= 0

I mv + mδv + vδm + δmδv︸ ︷︷ ︸
Ignore

−mv − uδm = mδv + (v − u) δm = 0

I Divide by δt (time over which mass acquisition occurs) :
∆p
δt = m δv

δt + (v − u)︸ ︷︷ ︸
Relative velocity,w

δm
δt = 0

I As δt → 0, m dv
dt + w dm

dt = 0 (in this case dv
dt is -ve as expected)
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A body acquiring mass - with external force

I Case 2: Application of an external force F
I NII : change of momentum = ∆p = Fδt = mδv + w δm

as before, where w = (v − u)

I Divide by δt and let δt → 0

m dv
dt + w dm

dt = F

Note : ONLY in the case when u = 0 does d
dt (mv) = F
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11.2 Example - the raindrop
An idealised raindrop has initial mass m0, is at height h above ground
and has zero initial velocity. As it falls it acquires water (added from
rest) such that its increase in mass at speed v is given by
dm/dt = bmv where b is a constant. The air resistance is of the form
kmv2 where k is a constant.

I Formulate the equation of motion :
I m dv

dt + w dm
dt = F

→ m dv
dt + w dm

dt = mg − kmv2

I w = v (since u = 0) ; dm
dt = bmv

I dv
dt + (b + k)v2 = g

I Terminal velocity :

I dv
dt = 0 → vT =

√
g

b+k
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The raindrop, continued
I Calculate raindrop mass vs. distance
I dm

dt = bmv

I dm
dx = dm

dt
dt
dx = bmv

v = bm

→ dm
m = bdx

Integrate : [loge m]mm0
= [bx ]x0

I m = m0 exp(bx)

(Mass grows exponentially with x)

I What is its speed at ground level ?
I dv

dt + (b + k)v2 = g → dv
dt = dv

dx
dx
dt = v dv

dx

I
∫ vh

0
vdv

g−(b+k)v2 =
∫ h

0 dx → h =
[
−
(

loge(g−(b+k)v2)
2(b+k)

)]vh

0

I Solving : vh =
√

g
b+k [1− exp (−2h(b + k))]
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11.3 Ejecting mass : the rocket equation
I A body of mass m has

velocity v . In time δt it ejects
mass δm, with relative
velocity w to the body

I Change of momentum ∆p =
δm(v − w) + (m − δm)(v + δv)︸ ︷︷ ︸

After− mv︸︷︷︸
Before

= vδm−wδm + mv + mδv−
vδm − δmδv︸ ︷︷ ︸

Ignore

−mv

I With external force : F = ∆p
δt = m δv

δt − w δm
δt

I As δt → 0, δv
δt →

dv
dt & δm

δt → −
dm
dt (as δm

δt is +ve but dm
dt is -ve)

I Hence, again, F = m dv
dt + w dm

dt the rocket equation
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11.4 The rocket : horizontal launch
I Rocket equation:

m dv
dt + w dm

dt = F = 0 (no gravity)

I Assume mass is ejected with
constant relative velocity to the
rocket w

I m dv = −w dm → dv = −w dm
m

I Initial/final velocity = vi , vf
Initial/final mass = mi , mf

I
∫ vf

vi
dv = −w

∫ mf
mi

dm
m

I vf − vi = w loge (mi/mf )

This expression gives the
dependence of rocket velocity as
a function of its mass
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12.1 The rocket : vertical launch

I Rocket equation:
m dv

dt + w dm
dt = F

I Rocket rises against gravity
F = −mg

I Mass is ejected at constant
velocity w relative to the rocket

I Rocket ejects mass uniformly:
m = m0 − αt

→ dm
dt = −α

I Now consider upward motion:

I mdv = (−mg + wα)dt →
∫ vf

vi
dv =

∫ tf
ti

(
−g + wα

m0−αt

)
dt

I vf − vi =
[
−g(tf − ti )− w loge

(m0−αtf )
(m0−αti )

]
= [−g(tf − ti )− w loge(mf/mi )]
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Rocket vertical launch, continued
The rocket starts from rest at t = 0; half the mass is fuel. What is the
velocity and height reached by the rocket at burn-out at time t = T ?

I v =
[
−gt − w loge

(m0−αt)
(m0)

]
=
[
−gt − w loge

(
1− α

m0
t
)]

= dx
dt

I What is the condition for the rocket to rise ? → dv
dt > 0

At t = 0, m = m0,
dm
dt = −α : αw −m0g > 0 → w > m0g

α

I m = m0 − αt ; at burnout t = T , m = m0
2 → α = m0

2T

I Maximum velocity is at the burn-out of the fuel:

At t = T : vmax = −gT + w loge 2

Height :
∫ x

0 dx =
∫ T

0

[
−gt − w loge

(
1− α

m0
t
)]

dt

I Standard integral :
∫

loge z dz = z loge z − z

I x = − gT 2

2 + w mo
α

[(
1− α

m0
t
)(

loge

(
1− α

m0
t
))
−
(

1− α
m0

t
)]T

0

I After simplification : x = − gT 2

2 + wT (1− loge 2)
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12.2 The 1-stage vs. 2-stage rocket
A two stage rocket is launched vertically from earth, total mass
M0 = 10000 kg and carries an additional payload of m = 100 kg. The
fuel is 75% of the mass in both stages; burn rate α = 500 kg s−1,
thrust velocity w = 2.5 km s−1. The mass of the 2nd stage is 900 kg.
i) Calculate the final speed for the equivalent single stage rocket
ii) Find the final speed of the 2-stage rocket

(i) Single stage rocket :
I Time to burn-out :

|∆m
∆t | = α→ T = 0.75(M1 + M2)/500 [kg s−1]

I From before : vf = −gT + w loge(mi/mf )

mi = M1 + M2 + m ; mf = 0.25(M1 + M2) + m

I Single stage : vf = 3.25 km s−1

I Earth’s escape speed :
1
2mv2 > GMem

RE
→ vesc =

√
2GME

RE

→ vesc = 11.2 km s−1 (i .e. vf < vesc)
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(ii) The 2-stage rocket
Stage 1

I |∆m
∆t | = α → T = 0.75M1/500 [kg s−1]

I v1 = −gT + w loge(mi/mf )

mi = M1 + M2 + m ; mf = 0.25M1 + M2 + m

I After first stage :vf = 2.68 km s−1

Stage 2

I |∆m
∆t | = α → T = 0.75M2/500 [kg s−1]

I v2 = v1 − gT + w loge(mi/mf )

mi = M2 + m ; mf = 0.25M2 + m

I After second stage :

v2 = 2.68 + 2.80 = 5.48 km s−1

I Need a 3rd stage, more thrust or less
payload to escape
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12.3 Non-inertial reference frames
A frame in which Newton’s first law is not satisfied - the frame is
accelerating (i.e. subject to an external force)

Recall Galilean transformation but now u varies with time :

Galilean transformation Accelerating frame

Position r′ = r− ut r′ = r−
∫
u(t) dt

Velocity v′ = v − u v′ = v − u(t)
Acceleration dv′

dt = dv
dt

dv′

dt = dv
dt −

du
dt

Force on mass F′(r′) = F (r) = m dv
dt F′(r′) = F(r)−m du

dt

I So even if F (r) = 0, from NII, there is an apparent (or
“ficticious”) force acting in S′ of F′(r′) = −m du

dt
17



12.3.1 Commonplace examples

Accelerating train
I In the inertial frame∑

Fx = T sin θ = ma∑
Fy = T cos θ −mg = 0

I In the non-inertial frame∑
F ′x = T sin θ − Ffictitious∑
F ′y = T cos θ −mg = 0

In NIF need to introduce
Ffictitious = ma to explain the
displacement of the bob.

Mass rotating in a circle
I In the inertial frame

Centripetal acceleration provided by
tension in the string

T = mrω2

I In the non-inertial frame

The block is at rest and its
acceleration is zero

In NIF need Ffictitious = mrω2

(centrifugal force) to balance the
tension in the string.
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12.3.2 Example : accelerating lift

I First consider the lift in free-fall

I The ball is “weightless” (stationary or
moves at constant velocity) according
to an observer in the lift → lift
becomes an inertial frame (like in deep
space) : NI.

I To this observer the fictitious
acceleration

(
−du

dt

)
balances the

gravitational acceleration
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Observer in accelerating lift
I Lift plus passenger (total mass M) is now

accelerated upwards with force F . Passenger
drops ball mass m′ from height h (M >> m′).

I Total force on lift Ftot = F −Mg = Ma

Acceleration of lift a = F
M − g

I According to passenger in lift frame,
downwards acceleration of ball is

= ( F
M − g) + g = F

M (downwards)
I Hence weight of ball appears to passenger to

be (F/M)×m′

I Check this:

If F = 0, free-fall, ball is weightless

If F = Mg, lift is stationary, ball has weight m′g

I Time for ball to reach floor, use h = 1
2at2 → t =

√
2hM

F
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Observer watching from a frame outside the lift
I Observer watches ball fall

with acceleration g and the
lift rise with acceleration
F
M − g

I Equate times when ball
reaches floor:

t =

√
2h′

g︸ ︷︷ ︸
ball falling

=

√
2(h − h′)
F/M − g︸ ︷︷ ︸
lift rising

I Solve for h′ → h′ = Mgh
F

I Substitute back
→ t =

√
2Mh

F as before.
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13.1 Magnetic Force on a Charged Particle

F = q v ×B

I F is the magnetic force
I q is the charge
I v is the velocity of the

moving charge
I B is the magnetic field

Because the magnetic force is perpendicular to the
displacement (dW = F.dx), the force does no work on the
particle

I Kinetic energy does not change
I Speed does not change
I Only direction changes
I Particle moves in a circle if v ⊥ B
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F = q v ×B

Newton’s second law in
components

I mẍ = Fx

I mÿ = Fy

I mz̈ = Fz

Simple case: v perpendicular to B

I Magnetic force= centripetal force

I F = qvB = mv2

R (magnitudes)

where R is the radius of curvature
I R = mv

qB = p
qB

p is the particle momentum
23



13.2 B Field only, v ⊥ B

m r̈ = qv ×B

I mẍ = Fx , mÿ = Fy , mz̈ = Fz

I B−field only→ B = Bzk

I v = (ẋ , ẏ ,0)

v ×B =

∣∣∣∣∣∣
i j k
ẋ ẏ ż
0 0 Bz

∣∣∣∣∣∣ = ẏBz i− ẋBzj

I mẍ = qBz ẏ ; mÿ = −qBz ẋ
I ẍ = ωẏ ; ÿ = −ωẋ where ω = qBz

m
I ẏ = −ωx + c; (ẏ = 0 at t = 0→ c = 0)
I ẍ +ω2x = 0 → x = A1 cosωt+A2 sinωt

I At t = 0:
I r0 = (0,0,0)

I v0 = (u0,0,0)

I At t = 0, x = 0 → A1 = 0 → x = A2 sinωt
I ẋ = A2 ω cosωt ; at t = 0, ẋ = u0 → A2 = u0

ω
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B Field only, continued
x = u0

ω sinωt

I From before :
ẏ = −ωx = −u0 sinωt

I y = u0
ω cosωt + c′

I At t = 0, y = 0 → c′ = −u0
ω

y = u0
ω (cosωt − 1)

I x = R sinωt (R = u0
ω = u0m

qBz
)

I y + R = R cosωt

→ Circle x2 + (y + R)2 = R2

I If at t = 0, v0 = (u0,0,w0)

The particle will spiral in circles
about the z-direction:

z = w0t ; x2 + (y + R)2 = R2
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13.3 Motion under electric and magnetic fields

m r̈ = qv×B+ qE
I mẍ = Fx , mÿ = Fy , mz̈ = Fz

I B−field→ B = Bzk

I E−field→ E = Ex i

v ×B =

∣∣∣∣∣∣
i j k
ẋ ẏ ż
0 0 Bz

∣∣∣∣∣∣ = ẏBz i− ẋBzj

I mẍ = qBz ẏ + qEx ; mÿ = −qBz ẋ
I ẍ = ωẏ + qEx

m where ω = qBz
m

I ẏ = −ωx (as before ẏ = 0 at t = 0)

I ẍ + ω2x = qEx
m : solution x = x1 + x2

I At t = 0:
I r0 = (0,0,0)

I v0 = (0,0,0)

I Complementary function : x1 = A1 cosωt + A2 sinωt
I Particular integral : x2 = qEx

mω2
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Electric and magnetic fields, continued
I x = A1 cosωt + A2 sinωt + qEx

mω2

Define a = qEx
mω2

I t = 0, x = 0 → A1 + a = 0
I t = 0, ẋ = 0 → A2 = 0

x = a (1− cosωt)

I From before :
ẏ = −ωx = −aω (1− cosωt)

I y = a (sinωt − ωt) + c
I At t = 0, y = 0 → c = 0

y = a (sinωt − ωt)
I −a cosωt = x − a
I a sinωt = y + aωt

→ A circle rolling down the −y axis : (x − a)2 + (y + aωt)2 = a2
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13.4 Kinetic energy in E & B fields
13.4.1 B only, v ⊥ B

I x = u0
ω sinωt → ẋ = u0 cosωt

I y = u0
ω (cosωt − 1)

→ ẏ = −u0 sinωt
I T = 1

2m[u0 cosωt ]2+ 1
2m[−u0 sinωt ]2

= 1
2mu2

0 → No energy change

13.4.2 B and E

I x = a (1− cosωt) → ẋ = aω sinωt
I y = a (sinωt − ωt)

→ ẏ = aω (cosωt − 1)

I T = 1
2m(aω)2(1 + 1− 2 cosωt)

= 1
2m(2aω)2 sin2 ωt

2 → W.D. by E field
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13.5 Cyclotron motion (E & B fields)
I Let the electric field vary with

time as:

E = E0

 cosωt
− sinωt

0

 , B = Bzk

I Can show by direct substitution

x(t) = R [ω t sinωt + sinωt − 1]

y(t) = R [ω t cosωt − sinωt ]

is a solution of the EOM

where R = qE0
mω2 and ω = qBz

m

ω is the Cyclotron frequency
I (x + R)2 + y2 = R2 [(ωt)2 + 1

]
I T = 1

2m[ẋ2 + ẏ2] = 1
2mR2ω4t2

→ particle accelerator
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14.1 Differentiation of vectors wrt time

Vectors follow the rules of differentiation:

I d
dt a = dax

dt i +
day
dt j + daz

dt k = ȧx i + ȧy j + ȧzk

I d
dt (a + b) = da

dt + db
dt = ȧ + ḃ

I d
dt (c a) = d c

dt a + c da
dt = ċ a + c ȧ

I d
dt (a.b) = da

dt .b + a.dbdt = ȧ.b + a.ḃ

I d
dt (a×b) = da

dt ×b+a× db
dt = ȧ×b+a× ḃ (order is impt.)

Orthogonality of differentiated unit vectors

I d
dt (r̂.r̂) = 2r̂.d r̂dt = 0 (since r̂.r̂ = 1)

Therefore d r̂
dt ⊥ r̂ → d r̂

dt ∝ θ̂

Derivative of any unit vector gives a vector perpendicular to it.
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14.1.1 The position vector in polar coordinates

I r = r0(i cos θ + j sin θ)

r̂ = (i cos θ + j sin θ) is a unit
vector in the direction of r

I
d r̂
dt =

[
−i sin θ + j cos θ

]
θ̇

I θ̂ = (−i sin θ + j cos θ) is a unit
vector perpendicular to r

I ˙̂r = θ̇ θ̂ also ˙̂θ = −θ̇ r̂
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14.1.2 The velocity vector in polar coordinates

I r = r r̂
v = ṙ = ṙ r̂+ r ˙̂r

I From before ˙̂r = θ̇ θ̂

General case: v = ṙ = ṙ r̂ + r θ̇ θ̂

For circular motion:
I Since ṙ = 0
I v = r θ̇ θ̂ = r ω θ̂
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14.1.3 The acceleration vector in polar coordinates
I From before v = ṙ = ṙ r̂ + r θ̇ θ̂
I a = v̇ = r̈

d
dt (ṙ r̂) = r̈ r̂ + ṙ θ̇θ̂ (since ˙̂r = θ̇ θ̂)

d
dt (r θ̇ θ̂) = r θ̇ ˙̂θ + r θ̈ θ̂ + ṙ θ̇ θ̂

= −r θ̇2 r̂ + r θ̈ θ̂ + ṙ θ̇ θ̂

(since ˙̂
θ = −θ̇ r̂)

General case :
a = r̈ = (r̈ − r θ̇2) r̂ + (2ṙ θ̇ + r θ̈) θ̂

For circular motion:
I Since scalars r̈ = ṙ = θ̈ = 0

(no change in magnitudes of
radius or azimuthal acceleration)

a = −r θ̇2 r̂ = −ω2r r̂ = −v2

r r̂
33



14.2 Angular momentum and torque

I The definition of angular momentum (or
the moment of momentum) J for a
single particle : J = r× p

r is the displacement vector from the
origin and p the momentum

I The direction of the angular momentum
gives the direction perpendicular to the
plane of motion

I Differentiate: dJ
dt = r× dp

dt + dr
dt × p

I Definitions of force and velocity: F =
dp
dt and v = dr

dt

I
dJ
dt = r× F + v × p ← this term= mv × v = 0

I Define torque τ = r× F = dJ
dt (cf. Linear motion F =

dp
dt )

I For multiple forces : dJ
dt =

∑n
i=1 ri × Fi = τ tot
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Torque depends on the origin

I Torque wrt origin O
τ o = r× F

I Torque wrt point A
τA = rA × F = r× F−R× F

= τ 0 −R× F

I Hence in general τ o 6= τA

Same applies to angular momentum : Jo 6= JA
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14.3 Angular velocity ω for rotation in a circle
I Definition of angular velocity :

ṙ = ω × r

I Note that ṙ is always ⊥ r, so ω is
defined for circular motion

I Define n̂ such that θ̂ = n̂× r̂

I Recall v = ṙ = ṙr + r θ̇θ̂
I For circular motion ṙ = 0 ; θ̇ = ω
→ ṙ = ω × r = (ω n̂)× (r r̂) = rω θ̂

Relationship between J and ω

I J = r× p = m r× ṙ = m r× (ω × r)

I Recall vector identity a× (b× c) = (a.c)b− (a.b) c

I J = m r2 ω −m (r · ω) r

I r · ω = 0 since the circular rotation is in a plane
I Hence J = Iω where I = mr2 ; (generally I =

∑
i [mi r2

i ] )
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15.1 Angular acceleration α for rotation in a circle

Angular velocity for rotation in a circle : ṙ = ω × r

I ω = ω n̂ = θ̇ n̂

I Angular acceleration:

α = ω̇

Special case if α is constant→

I dω
dt = α → ω = ω0 + α t

I dθ
dt = ω → θ = θ0 + ω0 t + 1

2α t2

Which should be recognisable
equations !

Relationship between τ and α for rotation in a circle

τ = d
dtJ = Iα
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15.2 Angular motion : work and power
I Work linear motion :

dW = F · ds

→ W =
∫
F · ds

I Work angular motion :

τ = r× F

ds = dθ × r (dθ out of page)

dW = F · ds = F · (dθ × r)

= (r× F) · dθ
(scalar triple product)
W =

∫
τdθ =

∫
τ · ω dt

I Power :

Linear motion : P = F · v
Rotational motion : P = τ · ω
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15.3 Correspondence between linear and angular quantities
Linear quantities are re-formulated in a rotating frame:

Linear/ translational quantities Angular/ rotational quantities

Displacement, position: r [m] Angular displacement, angle: θ [rad]

Velocity: v [m s−1] Angular velocity: ω [rad s−1]

Acceleration: a [m s−2] Angular acceleration: α [rad s−2]

Mass m [kg] Moment of inertia: I [ kg m2 rad−1]

Momentum: p [kg m s]−1 Angular momentum: J [kg m2 s−1]

Force F [N = kg m s−2] Torque: τ [kg m2 s−2 rad−1]

Weight Fg [N] Moment [N m]

Work dW = F · dx [N m] Work W = τ · dθ [N m]
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15.3.1 Reformulation of Newton’s laws for angular motion

1. In the absence of a net applied torque, the angular velocity
remains unchanged.

2. Torque = [moment of inertia]× [angular acceleration]
τ = Iα

This expression applies to rotation about a single principal
axis, usually the axis of symmetry.
(cf. F = ma). More on moment of inertia comes later.

3. For every applied torque, there is an equal and opposite
reaction torque. (A result of Newton’s 3rd law of linear
motion.)
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15.3.2 Example: the simple pendulum

Derive the EOM of a simple pendulum using angular variables:

I τ = r× F = −mgr sin θ ẑ

I J = r×mv = mrv ẑ

I v = r θ̇ → v̇ = r θ̈

I
dJ
dt = mrv̇ ẑ = (mr 2θ̈) ẑ

(since ẑ is a constant vector)

I
dJ
dt = τ → mr 2θ̈ = −mgr sin θ

I θ̈ + g
r sin θ = 0
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15.4 Moments of forces
Simple example : ladder against a wall

I If no slipping, torques (moments) must balance
I About any point:∑n

i=1 ri × Fi = τ tot = 0
I Moments about O

mg L
2 cos θ = N2L sin θ

I Also balance of forces in equilibrium

mg = N1 and Fs = µN1 = N2

General case: body subject to gravity.
Total moment :

I M =
∫

V r× g ρdV mass term

+
∑n

i=1 ri × Fi external forces

−
∫

S r× (pndS) surface pressure
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15.5 Central forces

I Central force: F acts towards
origin (line joining O and P)
always.

I F = f (r) r̂ only

I Examples:

Gravitational force F = −GmM
r2 r̂

Electrostatic force F = q1q2
4πε0r2 r̂
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15.5.1 A central force is conservative
A force F is conservative if it meets 3 equivalent conditions:

1. The curl of F is zero : ∇× F = 0

2. Work over closed path W ≡
∮

C F · dr = 0, independent of path

3. F can be written in terms of scalar potential F = −∇U

I Equivalence of 1 & 2 from Stokes’ theorem∫
S(∇× F) · da =

∮
C F · dr = 0

I Equivalence of 1 & 3 from vector calculus identity :
∇× (∇U) = 0

For a central potential, take the grad of U(r) :

I In cartesians ∇U(r) =
∂U(
√

x2+y2+z2)

∂x x̂ + . . . (ŷ and ẑ terms)
I Chain rule ∂U

∂x = ∂U
∂r

∂r
∂x : ∇U(r) = x√

x2+y2+z2

∂U(r)
∂r x̂ + . . .

I Since xx̂+yŷ+zẑ√
x2+y2+z2

= r̂ → −∇U(r) = −∂U(r)
∂r r̂ ≡ f (r)r̂ = F(r)

The grad of the scalar potential has only one non-vanishing
component which is along r̂ (→ central force).
Hence condition (3) is satisfied→ central force is conservative force.44



16.1 Central force : the equation of motion
I Recall the acceleration in polar coordinates
a = r̈ = (r̈ − r θ̇2) r̂ + (2ṙ θ̇ + r θ̈) θ̂

I If F = f (r) r̂ only, then Fθ = 0

→ Fθ = m(2ṙ θ̇ + r θ̈) = 0

→ Fr = m(r̈ − r θ̇2) = f (r)

I Consider d
dt (r2θ̇) = 2r ṙ θ̇ + r2 θ̈

Hence 1
r

d
dt (r2θ̇) = 0

→ (r2θ̇) = constant of motion

I The angular momentum in the plane :
J = m r× v = m r× (ṙ r̂ + r θ̇ θ̂) = (mr2 θ̇) n̂

where r× r̂ = 0 and n̂ = r̂× θ̂
I Torque about origin : τ = dJ

dt = r× F = 0 (F acts along r)
Angular momentum vector is a constant of the motion
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16.2 Motion under a central force

16.2.1 Motion in a plane

I J = m r× v

I Angular momentum is always perpendicular to r and v

I J is a constant vector ; J · r = 0 ; J · v = 0

Motion under a central force lies in a plane
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16.2.2 Sweeping out equal area in equal time
I Central force example : planetary motion : |Fr | = GMm

r2

I Angular momentum is conserved
→ |J| = mr2 θ̇ = constant

I dA ≈ 1
2 r 2 dθ

I dA
dt = 1

2 r 2 θ̇
dA
dt = J

2m = constant (Kepler 2nd Law)

Orbit sweeps out equal area in equal time
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16.3 Central force : the total energy

I Total energy = kinetic + potential :
E = T + U(r) = 1

2mv2 + U(r) = constant

I v = ṙ r̂+ r θ̇θ̂ → |v|2 = (r̂+ r θ̇θ̂) · (r̂+ r θ̇θ̂)

→ |v|2 = ṙ 2 + r 2θ̇2 (since r̂ · θ̂ = 0)
I E = 1

2mṙ 2 + 1
2mr 2θ̇2 + U(r)

I No external torque: angular momentum is conserved
→ |J| = mr 2 θ̇ = constant

E = 1
2mṙ2 + J2

2mr2 + U(r)
I Potential energy for a central force

U(r) = −
∫ r

rref
F · dr = −

∫ r
rref

f (r)dr
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16.3.1 The potential term (inverse square interaction)

I F = − A
r2 r̂ → f (r) = − A

r2

[Attractive force for A > 0 →
signs are important !]

I U(r) = −
∫ r

rref
F · dr

= −
∫ r

rref
f (r) dr

I U(r) = −A
r + A

rref

Usual to define U(r) = 0 at
rref =∞
→ U(r) = −A

r

Newton law of gravitation : F = −GMm
r2 r̂ → U(r) = −GMm

r
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16.3.2 Example

A projectile is fired from the earth’s surface with speed v at an angle
α to the radius vector at the point of launch. Calculate the projectile’s
subsequent maximum distance from the earth’s surface. Assume that
the earth is stationary and its radius is a.
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16.3.2 Example : solution

I U(r) = −GMm
r

I |J| = m|r× v| = mav sinα

I Energy equation : E = 1
2mṙ2 + J2

2mr2 + U(r)

→ E = 1
2mṙ2 + ma2v2 sin2 α

2r2 − GMm
r

I At r = a : E = 1
2mv2 − GMm

a . At maximum height : ṙ = 0

→ 1
2mv2 − GMm

a = ma2v2 sin2 α
2r2

max
− GMm

rmax
(1)

→
(

v2 − 2GM
a

)
r2
max + 2GM rmax − a2v2 sin2 α = 0

I Solve and take the positive root
I Note from Equ.(1) : When ṙ → 0 as rmax →∞ , the rocket

just escapes the earth’s gravitational field

i.e. 1
2mv2 − GMm

a → 0 , vesc =
√

2GM
a (independent of α)
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17.1 Effective potential

I Energy equation : E = 1
2mṙ2 + J2

2mr2 + U(r)

I Define effective potential : Ueff (r) = J2

2mr2 + U(r)

→ then E = 1
2mṙ2 + Ueff (r)

I Note this has the same form as a 1-D energy expression :
→ E = 1

2mẋ2 + U(x)

→ the analysis becomes 1-D-like problem since J = const
I Allows to predict important features of motion without

solving the radial equation

→ 1
2mṙ2 = E − Ueff (r) ← LHS is always positive

→ Ueff (r) < E

The only locations where the particle is allowed to
go are those with Ueff (r) < E
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17.1.1 Ueff (r) for inverse square law

I Ueff (r) = J2

2mr2 − GmM
r

I Ueff (r) < Etot for all r

Three cases :

I Etot < 0 : Bound
(closed) orbit with
r1 < r < r2

I Etot has minimum
energy at r = r0 :
dUeff

dr = 0 , circular
motion with ṙ = 0

I Etot > 0 : Unbound
(open) orbit with
r > r3
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17.2 Examples
17.2.1 Example 1 : 2-D harmonic oscillator

I F = −kr (ignore the natural length of the spring)

I Energy equation :
E = 1

2mṙ2 + Ueff (r)

I Ueff (r) = J2

2mr2 + 1
2kr2

I For circular motion ṙ = 0 :

Emin when ∂Ueff
∂r |r0 = 0

→ − J2

mr3
0

+ kr0 = 0

where J = mv0r0

I Leads to mv2
0

r0
= k r0

as expected

Including the natural length:
I F = −kr→ F = −k(r− a)

I U = 1
2 kr2 → U = 1

2 k(r − a)2

Leads to mv2
0

r0
= k (r0 − a)
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Example continued

I Ueff (r) = J2

2mr2 + 1
2kr2

I For general motion :
I F = −kr

→ mẍ = −kx

→ mÿ = −ky
I Solution for B.C’s at t = 0:

x = r2, y = 0, ẋ = 0

→ x = r2 cosωt

→ y = r1 sinωt

where ω2 = k
m

I Ellipse: ( x
r2

)2 + ( y
r1

)2 = 1
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17.2.2 Example 2 : Rotating ball on table
Two particles of mass m are connected by a light inextensible string
of length `. The particle on the table starts at t = 0 at a distance `/2
from the hole at a speed v0 perpendicular to the string. Find the
speed at which the particle below the table falls.

I Energy equation :
E = 1

2mṙ2 + J2

2mr2 + U(r)

I ẏ = ṙ , U(r) = −mgy
I E = 1

2mṙ2 + 1
2mẏ2+

+ J2

2mr2 −mg(`− r)

I At t = 0 : J = mv0`
2 , E = 1

2mv2
0 −mg `

2

I Solution : ṙ2 =
g`+v2

0
2 − (`v0)2

8
1
r2 − gr .

Condition for the particle on the table to move in circular motion

→ ṙ = 0 , Equate forces mv2
0

`/2 = mg → gives v2
0

g` = 1
2
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Example 2 continued : effective potential

I Effective potential : Ueff = J2

2mr2 −mg(`− r)

I Closed orbit with rmin < r < `/2
I Ball never passes though hole in absence of friction,

minimum radius r = rmin
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18.1 The orbit equation

Note that the derivation of this is off syllabus

I Acceleration in polar coordinates

a = r̈ = (r̈ − r θ̇2) r̂ + 1
r

d
dt (r2θ̇) θ̂

I If F = f (r) r̂ only, then Fθ = 0 . J = mr2θ̇ = constant.

→ Fr = m(r̈ − r θ̇2) = − α
r2 (gravitational force, α = GmM)

I Hence r̈ = J2

m2 r3 − α
mr2 = u3 J2

m2 − u2 α
m (where u = 1

r ) (1)

I ṙ = dθ
dt

dr
dθ = J

m r2
dr
dθ = − J

m
d(1/r)

dθ = − J
m

du
dθ

I r̈ = d
dt (ṙ) = dθ

dt
d
dθ

(
− J

m
du
dθ

)
= −( J2

m2 u2)d2u
dθ2

I Substituting in Eq (1) : −( J2

m2 )u2 d2u
dθ2 = u3 J2

m2 − u2 α
m

→ d2u
dθ2 = −u + mα

J2 → d2u
dθ2 = −u + 1

r0
(r0 = J2

mα)
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The orbit equation continued
d2u
dθ2 = −u + 1

r0
where u = 1

r and r0 = J2

mα

I Solution is 1
r = 1

r0
+ C cos(θ − θ0) where C, θ0 = constants

r(θ) = r0
1+e cos(θ−θ0) e = eccentricity (e = C r0)

I This is in the form of an ellipse†. Also have a link between
angular momentum and the ellipse geometry (J2 = mαr0).

† More precisely a conic section, which includes hyperbola, parabola and circle.

I Choose major axis as x
axis → θ0 = 0

I r(θ) = r0
1+e cos θ

I Equivalent form of ellipse :
(x

a )2 + ( y
b )2 = 1

I b = a
√

(1− e2)

I a = r0
(1−e2)
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18.1.1 The ellipse geometry
Example of a rotating planet : the sun is at the ellipse focus F

r(θ) = r0
1+e cos θ

(x
a

)2
+
(y

b

)2
= 1

I Closest approach θ = 0
“perigee” rmin = r0

1+e

Furthest approach θ = π
“apogee” rmax = r0

1−e
(ṙ = 0 in both cases)

I rmax + rmin = 2a = 2r0
1−e2

→ r0 = a(1− e2)

I xc + rmin = a→ xc + r0
1+e = a

→ xc = a− a(1− e) = a e
I At point A, r2 = x2

c + b2 ; cos θ = − xc
r ; r = r0

1−exc/r

→ (r0 + exc)2 = x2
c + b2 →

(
a(1− e2) + e2a

)2
= e2a2 + b2

b = a
√

(1− e2) also rmin = a(1− e) & rmax = a(1 + e)60



18.2 Kepler’s Laws

I KI: “The orbit of every planet is an ellipse
with the sun at one of the foci”.
[Already derived]

I KII: “A line joining a planet and the sun
sweeps out equal areas during equal
intervals of time”. [Already derived]

I KIII: “The squares of the orbital periods of
planets are directly proportional to the cubes
of the semi-major axis of the orbits”.
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18.2.1 Kepler III
“The squares of the orbital periods of planets are directly proportional
to the cubes of the semi-major axis of the orbits”

This is trivial for a circle :

→ mr0ω
2 = mr0(2π

T )2 = GmM
r2
0

→ r3
0 = T 2 GM

4π2

For an ellipse:
I dA

dt = 1
2 r2 θ̇ = J

2m = constant

I Integrate A =
∫ T

0
J

2m dt → A2 = ( J
2m )2T 2

I From before : r0 = a(1− e2) , b = a
√

(1− e2)→ a = b2

r0

I Area of an ellipse : A = πab → A2 = π2a3r0

I Putting it all together→ T 2 ∝ a3
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18.2.2 Planetary data
Kepler-III “The squares of the orbital periods of planets are directly
proportional to the cubes of the semi-major axis of the orbits”

I IMPRESSIVE !
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18.3 Elliptical orbit via energy (Emin < E < 0)

I E = 1
2mṙ2 + J2

2mr2 − α
r

I At turning points
ṙ = 0 → r = rmin or r = rmax

I E = J2

2mr2 − α
r

→ r2 + α
E r − J2

2mE = 0

→ r = − α
2E ±

[
( α

2E )2 + J2

2mE

] 1
2

I rmin,max = −
(
α

2E

)
[1± (1 +

2EJ2

mα2 )
1
2︸ ︷︷ ︸

e

]

rmax = − α

2E
(1 + e)︸ ︷︷ ︸

= a(1 + e)

, rmin = − α

2E
(1− e)︸ ︷︷ ︸

= a(1 - e)
Consistent with the orbit equations. NICE!

Also:
(1 + 2EJ2

mα2 )
1
2 ) = e

E = mα2

2J2 (e2 − 1)

= α
2r0

(e2 − 1)

where r0 = J2

mα and
e = eccentricity of ellipse.
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Elliptical orbit via energy, continued

r(θ) = r0
1+e cos θ

Total energy in ellipse parameters

E = α
2r0

(
e2 − 1

)
I e = 0, r = r0,E = − α

2r0

→ motion in a circle
I If 0 < e < 1 , E < 0

→ motion is an ellipse
I If e = 1 , E = 0

r(θ) = r0
1+cos θ

→ motion is a parabola
I If e > 1 , E > 0

→ motion is a hyperbola
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19.1 Example: mistake in the direction of a satellite
I Mistake is made in boosting a satellite, at radius R, into circular

orbit : magnitude of velocity is right but direction is wrong.
I Intended to apply thrust to give velocity v0 along circular orbit.
I Instead thrust at angle θ wrt direction of motion.
I Energy of orbit is right, angular momentum is wrong.

What is the perigee and apogee of
the resulting orbit? (Points B &C)

I Conservation of angular
momentum, points A & B

J = mv0R sin(π2 − θ) = mvBrB

I Energy at A = energy at perigee B
1
2mv2

0 −
α
R = 1

2mṙ2 + J2

2mr2
B
− α

rB

where α = GMm
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19.1 Example continued
I At point B, ṙ = 0, energy conservation becomes

1
2mv2

0 −
α
R =

m2v2
0 R2 cos2 θ

2mr2
B

− α
rB

I Equate forces for circular motion to get v0 :
mv2

0
R = α

R2 → v2
0 = α

mR

I Sub for v2
0 : energy conservation becomes

α
2R −

α
R = αR cos2 θ

2r2
B
− α

rB

I − 1
2R = R cos2 θ

2r2
B
− 1

rB

I (×2Rr2
B) → r2

B − 2RrB + R2 cos2 θ = 0
I rB = R−

√
R2 − R2 cos2 θ , also rC = R +

√
R2 − R2 cos2 θ

I rB = R(1− sin θ) Perigee

rC = R(1 + sin θ) Apogee
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19.1.1 Orbits with the same energy

Ueff

I

r
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19.2 Impulse leaving angular momentum unchanged

I Example: A satellite in circular orbit has been given an impulse
leaving J unchanged. The kinetic energy is changed by
T = βT0. Describe the subsequent motion.

I If J is not changed, impulse must be perpendicular to the
direction of motion, with angular part of the velocity unchanged.

I E = 1
2mṙ2 + J2

2mr2 − α
r

I Circular orbit:

→ ṙ = 0 , J = mr0v0 (1)

→ Einitial = 1
2mv2

0 −
α
r0

I Equate forces :

→ mv2
0

r0
= α

r2
0

→ v2
0 = α

mr0
(2)
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19.2 Example continued

I New orbit (elliptical): Enew = 1
2βmv2

0 −
α
r0

I Equate energies: subsequent motion described by:

I 1
2βmv2

0 −
α
r0

= 1
2mṙ2 + J2

2mr2 − α
r (3)

I Now solve for rmin , rmax . Set ṙ = 0
I From (1), (2), (3)→ (β − 2) r2 + 2r0 r − r2

0 = 0

I rmin,max =
− r0±
√

r2
0 +(β−2) r2

0
(β−2)

I Example: β = 1.001 → rmax = 1.033 r0 rmin = 0.968 r0

Changes in orbit
as a result of
impulse
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19.2.1 Orbits with the same angular momentum

I Eellipse = − α
2 a

I Ecircle = − α
2 r0
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19.3 Mutual orbits

I The two bodies make a mutual elliptical orbit on either side
of the C of M (origin) in a straight line through the C of M

I Relative position vector : r = r2 − r1
I Definition of C of M about O : m1 r1 + m2 r2 = 0
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Mutual orbits continued
I Internal forces: F12 = m1r̈1 , F21 = m2r̈2

Then r̈ = r̈2 − r̈1 =
F21
m2
− F12

m1

But F12 = −F21

I Hence r̈ = F21

(
1

m1
+ 1

m2

)
I Define 1

µ = 1
m1

+ 1
m2
→ µ = m1m2

m1+m2

µ is the reduced mass of the system

I Hence µ r̈ = F21

and µ r̈ = − Gm1m2
|r2−r1|2

r̂ = −G µ (m1+m2)
|r2−r1|2

r̂

I Therefore Newton’s Second Law for mutual motion can be
re-written in terms of the position of the second body with
respect to the first. The second body has the reduced mass
which orbits round the first body with an effective mass equal to
the sum of the two masses.
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19.3.1 Example: binary star
A binary star consists of two stars bound together by gravity moving
in roughly opposite directions along a nearly circular orbit. The period
of revolution of the starts about their centre of mass is 14.4 days and
the speed of each component is 220 km s−1. Find the distance
between the two stars and their masses.

I For single star : v = ( r
2)ω = r

2
2π
T

I r = vT
π = 8.7× 1010 m

I Mutual motion : µ (r̈ − r θ̇2)r̂ = −Gm1m2
r2 r̂

I For circular motion :

r̈ = ṙ = 0 , r θ̇2 = constant = rω2

I Equating forces :
rµω2 = Gm1m2

r2 = Gµ(m1+m2)
r2

I (m1 + m2) = r3ω2

G ; m1 = m2 (symmetry)
I m1 = m2 = 1.25× 1032 kg
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