Vectors and Matrices Problems
 Prof Neville Harnew, MT2012

Problem Set 4: Matrices Part II

1. Give geometric interpretations of cases where the solution of a set of three linear equations in three variables (a) is unique, (b) does not exist, (c) is a line, and (d) is a plane.
2. Whilst you might find this question slightly repetitive, it introduces different methods that can be used to solve simultaneous equations.
Solve the following equations for x, y and z by:
a) Calculating the matrix inverse
b) Using Cramer's method
c) Using row reduction.

$$
\begin{aligned}
x+2 y+3 z & =2 \\
3 x+4 y+5 z & =4 \\
x+3 y+4 z & =6
\end{aligned}
$$

3. For what values of λ does the system of equations:

$$
\begin{aligned}
(2-\lambda) x+y+2 z & =0 \\
x+(4-\lambda) y-z & =0 \\
2 x-y+(2-\lambda) z & =0
\end{aligned}
$$

have a non trivial solution? Show that the three allowed solutions can be geometrically represented by the lines: (1) $x=z$; (2) $z=-x=\frac{(2+\sqrt{ } 6) y}{2}$; and (3) $z=-x=\frac{(2-\sqrt{ } 6) y}{2}$.
4. Show that the following equations have solutions only if $\eta=1$ or 2 , and find the solutions in these cases:

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y+4 z & =\eta \\
x+4 y+10 z & =\eta^{2}
\end{aligned}
$$

5. Find the condition(s) on α such that the simultaneous equations

$$
\begin{aligned}
x+\alpha y & =1 \\
x-y+3 z & =-1 \\
2 x-2 y+\alpha z & =-2
\end{aligned}
$$

have (a) exactly one solution, (b) no solutions, or (c) an infinite number of solutions. Give the form of the solutions for the case (c).
6. Find the value for α such that the three planes:

$$
\begin{aligned}
3 x+2 y-z & =10 \\
5 x-y-4 z & =17 \\
x+5 y+\alpha z & =\beta
\end{aligned}
$$

do not intersect in a single point. Show that for this value of α there is no point common to all these planes unless $\beta=3$. For the case of the three planes having a common line of intersection, find its equation in cartesian form.
7. Find the eigenvalues and a set of normalized eigenvectors of the matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Verify that its eigenvectors are mutually orthogonal.
8. An ellipse, defined by the equation $x^{2}+3 y^{2}-2 x y=1$, may be rewritten in matrix form as $\mathbf{x}^{T} \mathbf{A} \mathbf{x}=1$ where \mathbf{x} is the column vector $\binom{x}{y}$ and \mathbf{A} is a symmetric matrix. Determine A.
9. Find the normalized eigenvectors of the Hermitian matrix

$$
H=\left(\begin{array}{cr}
10 & 3 i \\
-3 i & 2
\end{array}\right)
$$

Hence construct a unitary matrix U such that $U^{\dagger} H U=\Lambda$ where Λ is the real diagonal matrix

$$
\Lambda=\left(\begin{array}{rr}
1 & 0 \\
0 & 11
\end{array}\right)
$$

which has the eigenvalues of H as its diagonal elements.
[Hint: Avoid a common mistake. Remember that the normalization condition for a matrix A which has imaginary elements is $A^{\dagger} \cdot A=1$ (as opposed to $A^{T} \cdot A=1$).]
10. Show that the quadratic surface

$$
5 x^{2}+11 y^{2}+5 z^{2}-10 y z+2 x z-10 x y=4
$$

is an ellipsoid with semi-axes of lengths 2,1 and 0.5 . Find the direction of its longest axis.
[Hint: You might find this question quite tricky, but nevertheless it is very instructive. First write the left hand side of the equation in matrix form $\mathbf{x}^{T} A \mathbf{x}$ and then calculate the eigenvectors and eigenvalues of A (trust me, these are integer values). This will then allow a change of basis from which the answer just drops out. If you need a good reference for this question, see Riley, Hobson and Bence.]

