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OUTLINE : 9. INELASTIC COLLISIONS

9.1 Examples of 2D elastic collisions
9.1.1 Example 1: Equal masses, target at rest
9.1.2 Example 2: Elastic collision, m2 = 2m1, θ1 = 30◦

9.2 Inelastic collisions in the Lab frame in 1D (u2 = 0)
9.2.1 Coefficient of restitution

9.3 Inelastic collisions viewed in the CM frame
9.3.1 Kinetic energy in the CM : alternative treatment
9.3.2 Coefficient of restitution in the CM
9.3.3 Example of inelastic process
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9.1.1 Example 1: Equal masses, target at rest

Before

Magnitude of velocities:
I vCM = m1u1+m2u2

m1+m2
= u0

2

I u′1 = u0 − vCM = u0
2

I u′2 = −vCM = −u0
2

I |v ′1| = |u′1| = u0
2

I |v ′2| = |u′2| = u0
2

After
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Relationships between angles and speeds
Angles:

I Cosine rule:

(u0
2 )2 = (u0

2 )2 + v2
1 − 2v1

u0
2 cos θ1

I v1u0 cos θ1 = v2
1

I cos θ1 = v1
u0

as before

I cos θ2 = v2
u0

Opening angle:
I Cosine rule:

u2
0 = v2

1 + v2
2 − 2v1v2 cos(θ1 + θ2)

I But u2
0 = v2

1 + v2
2 (conservation of

energy)
I cos(θ1 + θ2) = 0 → θ1 + θ2 = π

2

NB: Lines joining opposite corners of rhombus cross at 90◦
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9.1.2 Example 2: Elastic collision, m2 = 2m1, θ1 = 30◦
Find the velocities v1 and v2 and the angle θ2

Magnitude of velocities:

I vCM = m1u1+m2u2
m1+m2

= u0
3

I u′1 = u0 − vCM = 2u0
3

I u′2 = −vCM = −u0
3

I |v ′1| = |u′1| = 2u0
3

I |v ′2| = |u′2| = u0
3
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Relationships between angles and speeds

I Sine rule:

(sin 30/2u0
3 ) = (sinα/u0

3 )

→ sinα = 1
4 → α = 14.5◦

I β = 30 + α = 44.5◦

I sin 30/2u0
3 = sin(180− 44.5)/v1

→ v1 = 0.93u0

I Cosine rule:

v2
2 = (u0

3 )2 + (u0
3 )2 − 2(u0

3 )2 cosβ

→ v2 = 0.25u0

I Sine rule:

(sin 44.5/v2) = (sin θ2/
u0
3 )

→ θ2 = 68.0◦
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9.2 Inelastic collisions in the Lab frame in 1D (u2 = 0)

An inelastic collision is where
energy is lost (or there is
internal excitation).

I Take m2 at rest & in 1D. Momentum : m1u1 = m1v1 + m2v2 (1)

I Energy : 1
2 m1u2

1 = 1
2 m1v2

1 + 1
2 m2v2

2 + ∆E (2)

I Square Equ.(1) and subtract 2m1× Equ.(2)

→ m2(m2 −m1)v2
2 + 2m1m2v1v2 − 2m1∆E = 0

I Substitute for m1v1 from Equ.1 to get quadratic in v2

→ m2(m2 + m1)v2
2 − 2m1m2u1v2 + 2m1∆E = 0

I Solve, taking consistent solutions with elastic case (∆E = 0)

→ v2 =
2m1m2u1+

√
4m2

1m2
2u2

1−8m1m2(m1+m2)∆E
2m2(m1+m2) (3)

→ v1 =
2m2

1u1−
√

4m2
1m2

2u2
1−8m1m2(m1+m2)∆E

2m1(m1+m2) (4)
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1D inelastic collisions viewed in the Lab frame (u2 = 0)

I We see from Equ. (3) & (4) there is a limiting case:
4m2

1m2
2u2

1 − 8m1m2(m1 + m2)∆E ≥ 0

I i.e. ∆E ≤ m1m2u2
1

2(m1+m2)

I This corresponds to the two bodies sticking together in a
single object of mass (m1 + m2) → v1 = v2

I From momentum cons. m1u1 = m1v1 + m2v2

if v1 = v2 = v , then v = m1u1
(m1+m2) (the CM velocity)

For equal mass m1 = m2 v2 , v1 = u1
2

[
1±

√
1− 4∆E

mu2
1

]
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9.2.1 Coefficient of restitution

General definition : e = |v2−v1|
|u1−u2|

= Speed of relative separation
Speed of relative approach

I From Equ.(3) & (4) previously

v2 − v1 =
2m1m2u1+

√
4m2

1m2
2u2

1−8m1m2(m1+m2)∆E
2m2(m1+m2)

−2m2
1u1−
√

4m2
1m2

2u2
1−8m1m2(m1+m2)∆E

2m1(m1+m2)

I Factorizing, then simplifying, then dividing by u1 gives

e =

√
1− 2(m1+m2)∆E

m1m2u2
1

=
√

1− ∆E
T ′

where T ′ = 1
2µu2

1 with µ = m1m2
m1+m2

(the reduced mass)
I We see later that T ′ is the initial energy in the CM frame,

hence e is related to the fractional energy loss in this frame
I e = 1 completely elastic; e = 0 perfectly inelastic,

in general 0 < e < 1
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9.3 Inelastic collisions viewed in the CM frame
Case of perfectly inelastic collision (e = 0)

After collision, total mass (m1 + m2) is at rest in CM:

I KE in CM: TCM = TLAB − 1
2(m1 + m2)v2

CM
I Differentiate: Loss in KE ∆TCM = ∆TLAB (obvious)
I Max. energy that can be lost = TCM =

= 1
2m1u2

1 + 1
2m2u2

2 −
1
2(m1 + m2)v2

CM
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9.3.1 Kinetic energy in the CM : alternative treatment
Revisit kinetic energy in the CM frame: TLab = TCM + 1

2Mv2
CM

I TCM = 1
2m1u′21 + 1

2m2u′22

I x ′1 = − m2
m1+m2

x = −m2
M x , x ′2 = m1

M x

I u′1 = −m2
M ẋ , u′2 = m1

M ẋ

I TCM = 1
2

(
m1(−m2

M )2 + m2(m1
M )2) ẋ2

I TCM = 1
2

m1m2
M2 (m2 + m1) ẋ2 = 1

2
m1m2

M ẋ2

I Also ẋ = ẋ2 − ẋ1 = u′2 − u′1

TCM = 1
2

m1m2
M ẋ2 = 1

2µẋ2 = 1
2µ(u′1−u′2)2 = 1

2µ(u1−u2)2

These expressions give the CM kinetic energy in terms of the
relative velocities in the CM & Lab and the reduced mass µ
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9.3.2 Coefficient of restitution in the CM
I Initial KE in the CM : T i

CM = 1
2µ(u′1 − u′2)2

I Final KE in the CM : T f
CM = 1

2µ(v ′1 − v ′2)2

I Conservation of energy : T i
CM = T f

CM + ∆E

→ 1
2µ(u′1 − u′2)2 = 1

2µ(v ′1 − v ′2)2 + ∆E

→
(

v ′
1−v ′

2
u′

1−u′
2

)2
= 1− ∆E

T i
CM

→
(

v ′
1−v ′

2
u′

1−u′
2

)
= ±

√
1− ∆E

T i
CM

Same expression as before with T ′ = T i
CM

Coefficient of restitution
e =

|v′
2−v

′
1|

|u′
1−u

′
2|CM

= |v2−v1|
|u1−u2|LAB

=
√

1− ∆E
T i

CM

ONLY in CM frame can ALL the KE be used to create ∆E
→ For e = 0 the two particles coalesce and are at rest in CM12



9.3.3 Example of inelastic process
A calcium nucleus (A=20), mass m, travels with velocity u0 in the Lab.
It decays into a sulphur nucleus (A=16), mass 4

5 m, and an α-particle
(A=4), mass 1

5 m. Energy ∆T is released as KE in the calcium rest
frame (CM). A counter in the Lab detects the sulphur nucleus at 90◦

to the line of travel. What is the speed and angle of the α-particle in
the Lab?
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I Energy ∆T is released as
KE in the CM. vCM = u0

I Momentum in CM:
4
5mv ′1 −

1
5mv ′2 = 0

→ v ′2 = 4v ′1
I Energy: ∆T = 1

2(4
5m)v ′1

2 +
1
2(1

5m)16v ′1
2 = 2mv ′1

2

→ v ′1 = [ ∆T
2m ]

1
2

→ v ′2 = [8∆T
m ]

1
2

I Transform to Lab by
boosting by vCM(= u0)

I cosα = u0
v ′

1
= [

2mu2
0

∆T ]
1
2

I Cosine rule: v2
2 = v ′2

2 + u0
2 + 2v ′2u0 cosα

I Sine rule: sin θ2
v ′

2
= sinα

v2

Solve for
v2 , θ2
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