Classical Mechanics

LECTURE 9:
 INELASTIC COLLISIONS

Prof. N. Harnew
University of Oxford
MT 2016

OUTLINE : 9. INELASTIC COLLISIONS

9.1 Examples of 2D elastic collisions
9.1.1 Example 1: Equal masses, target at rest
9.1.2 Example 2: Elastic collision, $m_{2}=2 m_{1}, \theta_{1}=30^{\circ}$
9.2 Inelastic collisions in the Lab frame in $1 D\left(u_{2}=0\right)$
9.2.1 Coefficient of restitution
9.3 Inelastic collisions viewed in the CM frame
9.3.1 Kinetic energy in the CM : alternative treatment
9.3.2 Coefficient of restitution in the CM
9.3.3 Example of inelastic process

9.1.1 Example 1: Equal masses, target at rest

Before

Magnitude of velocities:

- $v_{C M}=\frac{m_{1} u_{1}+m_{2} u_{2}}{m_{1}+m_{2}}=\frac{u_{0}}{2}$
- $u_{1}^{\prime}=u_{0}-v_{C M}=\frac{u_{0}}{2}$
- $u_{2}^{\prime}=-v_{C M}=-\frac{u_{0}}{2}$
- $\left|v_{1}^{\prime}\right|=\left|u_{1}^{\prime}\right|=\frac{u_{0}}{2}$
- $\left|v_{2}^{\prime}\right|=\left|u_{2}^{\prime}\right|=\frac{u_{0}}{2}$

Relationships between angles and speeds

Angles:

- Cosine rule:

$$
\left(\frac{u_{0}}{2}\right)^{2}=\left(\frac{u_{0}}{2}\right)^{2}+v_{1}^{2}-2 v_{1} \frac{u_{0}}{2} \cos \theta_{1}
$$

- $v_{1} u_{0} \cos \theta_{1}=v_{1}^{2}$
- $\cos \theta_{1}=\frac{v_{1}}{u_{0}}$ as before
- $\cos \theta_{2}=\frac{v_{2}}{u_{0}}$

Opening angle:

- Cosine rule:

$$
u_{0}^{2}=v_{1}^{2}+v_{2}^{2}-2 v_{1} v_{2} \cos \left(\theta_{1}+\theta_{2}\right)
$$

- But $u_{0}^{2}=v_{1}^{2}+v_{2}^{2}$ (conservation of
 energy)
- $\cos \left(\theta_{1}+\theta_{2}\right)=0 \rightarrow \theta_{1}+\theta_{2}=\frac{\pi}{2}$

NB: Lines joining opposite corners of rhombus cross at 90°
9.1.2 Example 2: Elastic collision, $m_{2}=2 m_{1}, \theta_{1}=30^{\circ}$ Find the velocities v_{1} and v_{2} and the angle θ_{2}

Magnitude of velocities:

- $v_{C M}=\frac{m_{1} u_{1}+m_{2} u_{2}}{m_{1}+m_{2}}=\frac{u_{0}}{3}$
- $u_{1}^{\prime}=u_{0}-v_{C M}=\frac{2 u_{0}}{3}$
- $u_{2}^{\prime}=-v_{C M}=-\frac{u_{0}}{3}$
- $\left|v_{1}^{\prime}\right|=\left|u_{1}^{\prime}\right|=\frac{2 u_{0}}{3}$
- $\left|v_{2}^{\prime}\right|=\left|u_{2}^{\prime}\right|=\frac{u_{0}}{3}$

Relationships between angles and speeds

- Sine rule:
$\left(\sin 30 / \frac{2 u_{0}}{3}\right)=\left(\sin \alpha / \frac{u_{0}}{3}\right)$
$\rightarrow \sin \alpha=\frac{1}{4} \rightarrow \alpha=14.5^{\circ}$
- $\beta=30+\alpha=44.5^{\circ}$
- $\sin 30 / \frac{2 u_{0}}{3}=\sin (180-44.5) / v_{1}$
$\rightarrow v_{1}=0.93 u_{0}$
- Cosine rule:

$$
V_{c m}=\frac{u_{0}}{3}
$$

$$
\begin{aligned}
& v_{2}^{2}=\left(\frac{u_{0}}{3}\right)^{2}+\left(\frac{u_{0}}{3}\right)^{2}-2\left(\frac{u_{0}}{3}\right)^{2} \cos \beta \\
& \rightarrow v_{2}=0.25 u_{0}
\end{aligned}
$$

- Sine rule:
$\left(\sin 44.5 / v_{2}\right)=\left(\sin \theta_{2} / \frac{u_{0}}{3}\right)$
$\rightarrow \theta_{2}=68.0^{\circ}$

9.2 Inelastic collisions in the Lab frame in $1 D\left(u_{2}=0\right)$

An inelastic collision is where energy is lost (or there is internal excitation).

- Take m_{2} at rest \& in 1D. Momentum : $m_{1} u_{1}=m_{1} v_{1}+m_{2} v_{2}$
- Energy: $\quad \frac{1}{2} m_{1} u_{1}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\Delta E$
- Square Equ.(1) and subtract $2 m_{1} \times$ Equ.(2)

$$
\rightarrow \quad m_{2}\left(m_{2}-m_{1}\right) v_{2}^{2}+2 m_{1} m_{2} v_{1} v_{2}-2 m_{1} \Delta E=0
$$

- Substitute for $m_{1} v_{1}$ from Equ. 1 to get quadratic in v_{2}

$$
\rightarrow \quad m_{2}\left(m_{2}+m_{1}\right) v_{2}^{2}-2 m_{1} m_{2} u_{1} v_{2}+2 m_{1} \Delta E=0
$$

- Solve, taking consistent solutions with elastic case ($\Delta E=0$)

$$
\begin{align*}
& \rightarrow \quad v_{2}=\frac{2 m_{1} m_{2} u_{1}+\sqrt{4 m_{1}^{2} m_{2}^{2} u_{1}^{2}-8 m_{1} m_{2}\left(m_{1}+m_{2}\right) \Delta E}}{2 m_{2}\left(m_{1}+m_{2}\right)} \tag{3}\\
& \rightarrow \quad v_{1}=\frac{2 m_{1}^{2} u_{1}-\sqrt{4 m_{1}^{2} m_{2}^{2} u_{1}^{2}-8 m_{1} m_{2}\left(m_{1}+m_{2}\right) \Delta E}}{2 m_{1}\left(m_{1}+m_{2}\right)} \tag{4}
\end{align*}
$$

$1 D$ inelastic collisions viewed in the Lab frame $\left(u_{2}=0\right)$

- We see from Equ. (3) \& (4) there is a limiting case: $4 m_{1}^{2} m_{2}^{2} u_{1}^{2}-8 m_{1} m_{2}\left(m_{1}+m_{2}\right) \Delta E \geq 0$
- i.e. $\Delta E \leq \frac{m_{1} m_{2} u_{1}^{2}}{2\left(m_{1}+m_{2}\right)}$
- This corresponds to the two bodies sticking together in a single object of mass $\left(m_{1}+m_{2}\right) \quad \rightarrow \quad v_{1}=v_{2}$
- From momentum cons. $m_{1} u_{1}=m_{1} v_{1}+m_{2} v_{2}$

$$
\text { if } v_{1}=v_{2}=v \text {, then } v=\frac{m_{1} u_{1}}{\left(m_{1}+m_{2}\right)} \quad \text { (the CM velocity) }
$$

For equal mass $m_{1}=m_{2}$

$$
v_{2}, v_{1}=\frac{u_{1}}{2}\left[1 \pm \sqrt{1-\frac{4 \Delta E}{m u_{1}^{2}}}\right]
$$

9.2.1 Coefficient of restitution

General definition :

$$
\boldsymbol{e}=\frac{\left|\underline{\mathbf{v}}_{2}-\underline{\mathbf{v}}_{1}\right|}{\left|\underline{\mathbf{u}}_{1}-\underline{\mathbf{u}}_{2}\right|}=\frac{\text { Speed of relative separation }}{\text { Speed of relative approach }}
$$

- From Equ.(3) \& (4) previously

$$
\begin{aligned}
v_{2}-v_{1}= & \frac{2 m_{1} m_{2} u_{1}+\sqrt{4 m_{1}^{2} m_{2}^{2} u_{1}^{2}-8 m_{1} m_{2}\left(m_{1}+m_{2}\right) \Delta E}}{2 m_{2}\left(m_{1}+m_{2}\right)} \\
& -\frac{2 m_{1}^{2} u_{1}-\sqrt{4 m_{1}^{2} m_{2}^{2} u_{1}^{2}-8 m_{1} m_{2}\left(m_{1}+m_{2}\right) \Delta E}}{2 m_{1}\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

- Factorizing, then simplifying, then dividing by u_{1} gives
$e=\sqrt{1-\frac{2\left(m_{1}+m_{2}\right) \Delta E}{m_{1} m_{2} u_{1}^{2}}}=\sqrt{1-\frac{\Delta E}{T^{\prime}}}$
where $T^{\prime}=\frac{1}{2} \mu u_{1}^{2}$ with $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ (the reduced mass)
- We see later that T^{\prime} is the initial energy in the CM frame, hence e is related to the fractional energy loss in this frame
- $e=1$ completely elastic; $e=0$ perfectly inelastic, in general $0<e<1$

9.3 Inelastic collisions viewed in the CM frame

Case of perfectly inelastic collision ($e=0$)

LAB before

$$
\stackrel{u_{1}^{\prime}=\underline{u}_{1}-\underline{V}_{c m}}{\longrightarrow} \stackrel{\underline{u}_{2}^{\prime}=\underline{u}_{2}-V_{c m}}{\longrightarrow} V_{c m}
$$

CM before

After collision, total mass ($m_{1}+m_{2}$) is at rest in CM:

CM after

LAB after

- KE in CM: $T_{C M}=T_{L A B}-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{C M}^{2}$
- Differentiate: Loss in KE $\Delta T_{C M}=\Delta T_{L A B}$ (obvious)
- Max. energy that can be lost $=T_{C M}=$

$$
=\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{C M}^{2}
$$

9.3.1 Kinetic energy in the CM : alternative treatment

Revisit kinetic energy in the CM frame: $T_{L a b}=T_{C M}+\frac{1}{2} M v_{C M}^{2}$

- $T_{C M}=\frac{1}{2} m_{1} u_{1}^{\prime 2}+\frac{1}{2} m_{2} u_{2}^{\prime 2}$
- $x_{1}^{\prime}=-\frac{m_{2}}{m_{1}+m_{2}} x=-\frac{m_{2}}{M} x, x_{2}^{\prime}=\frac{m_{1}}{M} x$

- $u_{1}^{\prime}=-\frac{m_{2}}{M} \dot{X}, u_{2}^{\prime}=\frac{m_{1}}{M} \dot{X}$
- $T_{C M}=\frac{1}{2}\left(m_{1}\left(-\frac{m_{2}}{M}\right)^{2}+m_{2}\left(\frac{m_{1}}{M}\right)^{2}\right) \dot{x}^{2}$
- $T_{C M}=\frac{1}{2} \frac{m_{1} m_{2}}{M^{2}}\left(m_{2}+m_{1}\right) \dot{x}^{2}=\frac{1}{2} \frac{m_{1} m_{2}}{M} \dot{x}^{2}$
- Also $\dot{x}=\dot{x}_{2}-\dot{x}_{1}=u_{2}^{\prime}-u_{1}^{\prime}$

$$
T_{C M}=\frac{1}{2} \frac{m_{1} m_{2}}{M} \dot{x}^{2}=\frac{1}{2} \mu \dot{x}^{2}=\frac{1}{2} \mu\left(u_{1}^{\prime}-u_{2}^{\prime}\right)^{2}=\frac{1}{2} \mu\left(u_{1}-u_{2}\right)^{2}
$$

These expressions give the CM kinetic energy in terms of the relative velocities in the CM \& Lab and the reduced mass μ

9.3.2 Coefficient of restitution in the CM

- Initial KE in the CM : $T_{C M}^{i}=\frac{1}{2} \mu\left(u_{1}^{\prime}-u_{2}^{\prime}\right)^{2}$
- Final KE in the CM : $T_{C M}^{f}=\frac{1}{2} \mu\left(v_{1}^{\prime}-v_{2}^{\prime}\right)^{2}$
- Conservation of energy: $T_{C M}^{i}=T_{C M}^{f}+\Delta E$

$$
\begin{aligned}
& \rightarrow \frac{1}{2} \mu\left(u_{1}^{\prime}-u_{2}^{\prime}\right)^{2}=\frac{1}{2} \mu\left(v_{1}^{\prime}-v_{2}^{\prime}\right)^{2}+\Delta E \quad, \text { CM before } \\
& \rightarrow\left(\frac{v_{1}^{\prime}-v_{2}^{\prime}}{u_{1}^{\prime}-u_{2}^{\prime}}\right)^{2}=1-\frac{\Delta E}{T_{C M}^{\prime}} \\
& \rightarrow\left(\frac{v_{1}^{\prime}-V_{2}^{\prime}}{u_{1}^{\prime}-U_{2}^{\prime}}\right)= \pm \sqrt{1-\frac{\Delta E}{T_{C M}^{\prime}}}
\end{aligned}
$$

Same expression as before with $T^{\prime}=T_{C M}^{i}$

$$
\begin{gathered}
\text { Coefficient of restitution } \\
\left.e=\frac{\left|v_{2}^{\prime}-v_{1}^{\prime}\right|}{\left|\underline{u}_{1}^{\prime}-\underline{u}_{2}^{\prime}\right|} \right\rvert\, C M
\end{gathered} \frac{\left|\underline{v}_{2}-\underline{v}_{1}\right|}{\left|\underline{u}_{1}-\underline{u}_{2}\right|} \frac{L A B}{}=\sqrt{1-\frac{\Delta E}{T_{C M}^{\prime}}}
$$

ONLY in CM frame can ALL the KE be used to create ΔE $\overrightarrow{12}$ For $e=0$ the two particles coalesce and are at rest in CM

9.3.3 Example of inelastic process

A calcium nucleus ($\mathrm{A}=20$), mass m, travels with velocity u_{0} in the Lab. It decays into a sulphur nucleus ($\mathrm{A}=16$), mass $\frac{4}{5} \mathrm{~m}$, and an α-particle ($\mathrm{A}=4$), mass $\frac{1}{5} \mathrm{~m}$. Energy ΔT is released as KE in the calcium rest frame (CM). A counter in the Lab detects the sulphur nucleus at 90° to the line of travel. What is the speed and angle of the α-particle in the Lab?

- Energy ΔT is released as KE in the CM . $\quad v_{C M}=u_{0}$
- Momentum in CM:

$$
\begin{aligned}
& \frac{4}{5} m v_{1}^{\prime}-\frac{1}{5} m v_{2}^{\prime}=0 \\
& \rightarrow \quad v_{2}^{\prime}=4 v_{1}^{\prime}
\end{aligned}
$$

- Energy: $\Delta T=\frac{1}{2}\left(\frac{4}{5} m\right) v_{1}^{\prime 2}+$ $\frac{1}{2}\left(\frac{1}{5} m\right) 16 v_{1}^{\prime 2}=2 m v_{1}^{\prime 2}$

$$
\rightarrow \quad v_{1}^{\prime}=\left[\frac{\Delta T}{2 m}\right]^{\frac{1}{2}}
$$

$$
\rightarrow \quad V_{2}^{\prime}=\left[\frac{8 \Delta T}{m}\right]^{\frac{1}{2}}
$$

- Transform to Lab by boosting by $v_{C M}\left(=u_{0}\right)$

$$
\underline{V}_{c m}=\underline{u}_{0}
$$

- $\cos \alpha=\frac{u_{0}}{v_{1}^{\prime}}=\left[\frac{2 m u_{0}^{2}}{\Delta T}\right]^{\frac{1}{2}}$
- Cosine rule: $v_{2}^{2}={v_{2}^{\prime}}^{2}+u_{0}^{2}+2 v_{2}^{\prime} u_{0} \cos \alpha$
- Sine rule: $\frac{\sin \theta_{2}}{v_{2}^{\prime}}=\frac{\sin \alpha}{v_{2}}$

Solve for

v_{2}, θ_{2}

