LECTURE 9:

SPECIAL MATRICES AND MATRIX OPERATIONS

Prof. N. Harnew
University of Oxford
MT 2012

Outline: 9. SPECIAL MATRICES AND MATRIX OPERATIONS

9.1 The diagonal matrix
9.2 The identity (unit) and null (zero) matrices
9.3 Transpose of a matrix
9.3.1 Notes on matrix transpose
9.4 The complex and Hermitian conjugates 9.4.1 Example
9.5 The inverse of a matrix 9.5.1 Inverse matrix: a few useful properties
9.6 Orthogonal, unitary \& normal matrices
9.7 Trace of an $n \times n$ matrix
9.8 Functions of a matrix

9.1 The diagonal matrix

A is diagonal if $A_{i j}=0$ for $i \neq j$.

- i.e. the matrix has only elements on the diagonal which are different from zero.
- Obviously this is defined only if $n=m$ (a square matrix).
- Example:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{1}\\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

- An anti-diagonal matrix - example:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \tag{2}\\
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right)
$$

9.2 The identity (unit) and null (zero) matrices

The unit matrix:

- A diagonal matrix $/$ with all diagonal elements $=1$.

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \tag{3}\\
0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- This has the property $A I=I A=A$.

The null matrix:

- A matrix 0 with all elements equal to zero:
- $A 0=0$
- $A+0=A$

9.3 Transpose of a matrix

- The transpose of a matrix A, size $m \times n$, is a matrix B of size $n \times m$ with the rows and columns of A interchanged.
- $B=A^{T} \Rightarrow B_{j i}=A_{i j}$
- Example

$$
A=\left(\begin{array}{ll}
1 & 2 \tag{4}\\
3 & 4 \\
5 & 6
\end{array}\right), \quad A^{T}=\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right)
$$

9.3.1 Notes on matrix transpose

- A symmetric matrix is a square matrix with $A=A^{T}$
- If $A=-A^{T}$ the matrix is antisymmetric.

Example : $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 6 & 8 & 9 \\ 4 & 7 & 9 & 0\end{array}\right)$
Example : $\left(\begin{array}{cccc}0 & 2 & 3 & 4 \\ -2 & 0 & 6 & 7 \\ -3 & -6 & 0 & 9 \\ -4 & -7 & -9 & 0\end{array}\right)$

- Also $(A B)^{T}=B^{T} A^{T}$ (note that the order of A and B is reversed).

Proof

- Consider a general element of the matrix product:
- $(A B)_{i j}^{T}=(A B)_{j i}$

$$
\begin{aligned}
& =\sum_{k} A_{j k} B_{k i} \\
& =\sum_{k}\left(A^{T}\right)_{k j}\left(B^{T}\right)_{i k} \\
& =\sum_{k k}\left(B^{T}\right)_{i k}\left(A^{T}\right)_{k j} \\
& =\left(B^{T} A^{T}\right)_{i j} \quad \text { QED. }
\end{aligned}
$$

- It follows $(A B C \ldots Z)^{T}=Z^{T} \ldots C^{T} B^{T} A^{T}$

9.4 The complex and Hermitian conjugates

- To get the complex conjugate of a matrix A - take the complex conjugate of each element: $\left(A^{*}\right)_{i j}=\left(A_{i j}\right)^{*}$
- If a matrix is real: then $A^{*}=A$.
- The Hermitian conjugate of a matrix is the complex conjugate of its transpose:
$A^{\dagger}=\left(A^{T}\right)^{*}=\left(A^{*}\right)^{T}$
(Remember this was used for the inner product earlier).
To note:
- In analogy to the property of the transpose, $(A B C \ldots Z)^{\dagger}=Z^{\dagger} \ldots C^{\dagger} B^{\dagger} A^{\dagger}$.
- A complex matrix with $A=A^{\dagger}$ is Hermitian.
- If $A=-A^{\dagger}$, the matrix is anti-Hermitian.

9.4.1 Example

- Take the Hermitian conjugate of the matrix A

$$
\begin{align*}
& \qquad A=\left(\begin{array}{cc}
i & 2+i \\
-2+i & 3 i
\end{array}\right) \tag{7}\\
& \text { hence } A^{*}=\left(\begin{array}{cc}
-i & 2-i \\
-2-i & -3 i
\end{array}\right) \tag{8}\\
& \text { and } A^{\dagger}=\left(\begin{array}{cc}
-i & -2-i \\
2-i & -3 i
\end{array}\right) \tag{9}
\end{align*}
$$

- In this case, since $A^{\dagger}=-A$, the matrix is anti-Hermitian.

9.5 The inverse of a matrix

- For a matrix A, the inverse of the matrix A^{-1} is such that: $A A^{-1}=A^{-1} A=I$. This obviously applies only to square matrices.
- Not all square matrices have inverses. If a matrix has an inverse then the matrix is invertable or non - singular. Otherwise its singular.

Division of matrices

- There is no matrix division!
- However: if we want to find B where $A \cdot B=C$ (all square matrices of the same dimension), then multiply from the left by A^{-1} :

$$
A^{-1} A . B=B=A^{-1} C .
$$

- How to invert a matrix comes later.
i) $\left(A^{-1}\right)^{-1}=A$ (follows directly from $\left.A A^{-1}=A^{-1} A=I\right)$.
ii) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
iii) Similarly $\left(A^{\dagger}\right)^{-1}=\left(A^{-1}\right)^{\dagger}$
iv) $(A B)^{-1}=B^{-1} A^{-1}$

Proof:

- Start from $(A B)(A B)^{-1}=I$
- Multiply both sides from the left by A^{-1},

$$
A^{-1}(A B)(A B)^{-1}=A^{-1}
$$

- Hence $B(A B)^{-1}=A^{-1}$
- Multiply both sides from the left by B^{-1}, $B^{-1} B(A B)^{-1}=(A B)^{-1}=B^{-1} A^{-1} \quad$ as required.

9.6 Orthogonal, unitary \& normal matrices

- A real matrix with $A^{T}=A^{-1}$ is orthogonal,
- A matrix with $A^{\dagger}=A^{-1}$ is unitary,
- A matrix with $A A^{\dagger}=A^{\dagger} A$ is normal, commutes with its Hermitian congugate.

Commuting matrices

- Note that for matrices A and B to commute: $A B-B A=0$ Multiply from the left by $A^{-1} \rightarrow B-A^{-1} B A=0$

The condition is: $\quad B=A^{-1} B A$

9.7 Trace of an $n \times n$ matrix

- Defined as the sum of diagonal elements (the matrix must be square):

$$
\operatorname{Tr} A=A_{11}+A_{22}+\cdots+A_{n n}=\sum_{i=1}^{n} A_{i i}
$$

- Can easily show
- $\operatorname{Tr}(A \pm B)=\operatorname{Tr} A \pm \operatorname{Tr} B$
- $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A) \quad$ (cyclic permutations).

9.8 Functions of a matrix

- Powers of a matrix
$A^{2}=A . A ; \quad A^{3}=A . A \cdot A ; \quad A^{n}=A \cdot A \cdot A(n$ times $)$
- Exponential of a matrix $\exp A=1+A+\frac{A . A}{2!}+\frac{A . A . A}{3!}+\cdots$
$=1+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}$
where $1 \equiv l \rightarrow$ the unit (or identity) matrix
- Sine of a matrix $\sin A=A-\frac{A^{3}}{3!}+\frac{A^{5}}{5!}+\cdots$
- Can similarly expand anything that has a series.

