LECTURE 7: INNER PRODUCTS, LINEAR OPERATORS AND INTRODUCTION TO MATRICES

Prof. N. Harnew University of Oxford MT 2012

・ロト ・四ト ・ヨト ・ヨト 三座

1

Outline: 7. INNER PRODUCTS, LINEAR OPERATORS AND INTRODUCTION TO MATRICES

7.1 The scalar (inner) product

- 3D vectors : simple example of a 1D matrix
- The scalar (inner) product : imaginary vectors

7.2 Inner product & basis vectors

7.3 Dual vectors and dual vector spaces

7.4 Linear operators

7.4.1 Examples of linear operators

7.4 What is a matrix

7.1 The scalar (inner) product

First consider REAL vectors

- The inner product of two vectors $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ in an N dimensional vector space is denoted by $\langle \mathbf{a} | \mathbf{b} \rangle$
- The inner product of real vectors |a> and |b> in N dimensions (provided the basis vectors are orthogonal):

$$\langle \mathbf{a} | \mathbf{b} \rangle = \underline{\mathbf{a}}^T \cdot \underline{\mathbf{b}} = (a_1, a_2, \dots a_N) \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix} = \sum_{i=1}^N a_i b_i.$$
 (1)

- Here $\langle \mathbf{a} |$ is the transpose of $|\mathbf{a} \rangle$.
- The inner product is a scalar.
- The norm of |a⟩, i.e. ||a⟩|, is given by √⟨a|a⟩ and is a measure of (real) length : |<u>a</u>| = √<u>a^T.a</u> = √∑_{i=1}^N a_i².
 Other properties:
 - $\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle$ for real vectors.
 - If $|\mathbf{c}\rangle = \alpha |\mathbf{a}\rangle + \beta |\mathbf{b}\rangle$ then $\langle \mathbf{d} |\mathbf{c}\rangle = \alpha \langle \mathbf{d} |\mathbf{a}\rangle + \beta \langle \mathbf{d} |\mathbf{b}\rangle$
 - ► $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ are orthogonal if $\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle = 0$

3D vectors : simple example of a 1D matrix

- Take a (real) 3D coordinate system with orthogonal unit vectors $|\mathbf{e_x}\rangle, |\mathbf{e_y}\rangle, |\mathbf{e_z}\rangle \ (\equiv \underline{i}, \underline{j}, \underline{k})$
- Represent vector |a⟩ in the form of a one dimensional column matrix.

$$|\mathbf{a}\rangle \equiv \underline{\mathbf{a}} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$
(2)
$$- a_y |\mathbf{e}_y\rangle + a_z |\mathbf{e}_z\rangle.$$

where $|\mathbf{a}\rangle = a_x |\mathbf{e_x}\rangle + a_y |\mathbf{e_y}\rangle + a_z |\mathbf{\hat{e_z}}\rangle.$

► Define the *transpose* of the vector (matrix) by interchanging rows and columns: $\langle \mathbf{a} | = \mathbf{a}^T = \begin{pmatrix} a_x \\ a_y \end{pmatrix}^T = (a_x, a_y, a_z),$ (3)

$$\langle \mathbf{a} | \equiv \underline{\mathbf{a}}' = \begin{pmatrix} a_y \\ a_z \end{pmatrix} = (a_x, a_y, a_z).$$
 (3)

 \blacktriangleright The scalar product of two vectors \underline{a} and \underline{b} then becomes:

$$\langle \mathbf{a} | \mathbf{b} \rangle \equiv \underline{\mathbf{a}}^{\mathsf{T}} \cdot \underline{\mathbf{b}} = (a_x, a_y, a_z) \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z.$$
(4)

The scalar (inner) product : imaginary vectors

Now consider IMAGINARY vectors

 In complex vector spaces with |a⟩ complex we want |a| to be a "length" (a real and positive number). Hence ⟨a|a⟩ must become <u>a</u>[†].<u>a</u> where <u>a</u>[†] = <u>a</u>^T* (transpose, then complex conjugate) :

$$|\underline{\mathbf{a}}| = \sqrt{\underline{\mathbf{a}}^{\dagger} \cdot \underline{\mathbf{a}}} = \sqrt{\sum_{i=1}^{N} a_i^* a_i}$$

- ► The inner product of $|a\rangle$, $|b\rangle$ is again represented by $\langle a|b\rangle$ and is now a complex number.
- If $|\mathbf{a}\rangle$, $|\mathbf{b}\rangle$ are complex, inner product becomes:

$$\langle \mathbf{a} | \mathbf{b} \rangle = \underline{\mathbf{a}}^{\dagger} \cdot \underline{\mathbf{b}} = (a_1^*, a_2^*, \dots a_N^*) \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix} = \sum_{i=1}^N a_i^* b_i$$
(5)
ties:

Other properties:

- $\bullet \ \langle \mathbf{a} | \mathbf{b} \rangle \neq \langle \mathbf{b} | \mathbf{a} \rangle \ ! \quad \text{ For imaginary vectors } \quad \langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle^*$
- Again if $|\mathbf{c}\rangle = \alpha |\mathbf{a}\rangle + \beta |\mathbf{b}\rangle$ then $\langle \mathbf{d} |\mathbf{c}\rangle = \alpha \langle \mathbf{d} |\mathbf{a}\rangle + \beta \langle \mathbf{d} |\mathbf{b}\rangle$
- ► $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ are orthogonal if $\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle = 0$

7.2 Inner product & basis vectors

Basis vectors which are mutually orthogonal and each having *norm* = 1 are said to be *orthonormal*:

i.e.
$$\langle e_i | e_j \rangle = \delta_{ij}$$
 where δ_{ij} is the "Kronecker delta"

•
$$\delta_{ij} = 1$$
 for $i = j$, $\delta_{ij} = 0$ for $i \neq j$.

► The inner product of |a⟩ with the jth element of the orthonormal basis vector |e_j⟩ will "project out" the jth component of |a⟩:

$$\mathbf{a} = \sum_{i=1}^{N} a_i |\mathbf{e}_i\rangle$$

$$\mathbf{e}_j |\mathbf{a}\rangle = \sum_{i=1}^{N} \langle \mathbf{e}_j | a_i \mathbf{e}_i\rangle = \sum_{i=1}^{N} a_i \langle \mathbf{e}_j | \mathbf{e}_i\rangle = a_j$$

• If the basis vectors defining $|a\rangle$ and $|b\rangle$ are orthonormal: then, the inner product is :

$$\begin{aligned} \langle \mathbf{a} | \mathbf{b} \rangle &= \langle a_1 \mathbf{e}_1 + \dots + a_N \mathbf{e}_N | b_1 \mathbf{e}_1 + \dots + b_N \mathbf{e}_N \rangle \\ &= \sum_{i=1}^N a_i^* b_i \langle \mathbf{e}_i | \mathbf{e}_i \rangle + \sum_{i=1}^N \sum_{j \neq i}^N a_i^* b_j \langle \mathbf{e}_i | \mathbf{e}_j \rangle \\ &= \sum_{i=1}^N a_i^* b_i \end{aligned}$$

So orthornormality of the basis vectors is important.

7.3 Dual vectors and dual vector spaces

- A "linear map" (or "linear functional") is an operation that takes a real (or complex) vector as input and gives a real R (or complex S) number as output.
- ► Every vector space V has a "dual" vector space V* : the space of all possible linear maps from V → ℜ or V → ℑ.
- ► The most common example of a dual vector space is if V is the space of real column vectors, V* is then the space of real row vectors : inner product maps V to a real number ℜ

$$\langle \mathbf{a} | \mathbf{b} \rangle = \underline{\mathbf{a}}^T \cdot \underline{\mathbf{b}} = (a_1, a_2, \dots a_N) \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix} = \sum_{i=1}^N a_i b_i$$
(6)
$$\mathbf{a}^T \text{ is the dual vector of } \mathbf{a}$$

If |a⟩, |b⟩ are complex, inner product maps V to an imaginary number ℑ

$$\langle \mathbf{a} | \mathbf{b} \rangle = \underline{\mathbf{a}}^{\dagger} \cdot \underline{\mathbf{b}} = (a_1^*, a_2^*, \dots a_N^*) \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix} = \sum_{i=1}^N a_i^* b_i$$
(7)

$$\rightarrow Now \underline{\mathbf{a}}^{\dagger} \text{ is the dual vector of } \underline{\mathbf{a}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

• Note that the dual vector of $\lambda \underline{\mathbf{a}}$ is $\lambda^* \underline{\mathbf{a}}^{\dagger}$ (λ is a scalar)

7.4 Linear operators

A linear operator ${\bf A}$ transforms a vector $|{\bf x}\rangle$ to give another vector $|{\bf y}\rangle$

$|{f y} angle = {f A}|{f x} angle$

A is *linear* because of the following requirements:

- ► For vectors $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ and scalars λ and μ $\mathbf{A}(\lambda|\mathbf{a}\rangle + \mu|\mathbf{b}\rangle) = \lambda \mathbf{A}|\mathbf{a}\rangle + \mu \mathbf{A}|\mathbf{b}\rangle$ (associative and distributive).
- \blacktriangleright For linear operators ${\bf A}, {\bf B}, {\bf C}$ where

 $\mathbf{C}=\mathbf{A}+\mathbf{B}$

 $\Rightarrow {\bf C} |{\bf a}\rangle = ({\bf A} + {\bf B}) |{\bf a}\rangle = ({\bf B} + {\bf A}) |{\bf a}\rangle = {\bf A} |{\bf a}\rangle + {\bf B} |{\bf a}\rangle \text{ (distributive)}$

- ► For linear operators $\mathbf{D} = \mathbf{A}.\mathbf{B}$ $\mathbf{D}|\mathbf{a}\rangle = (\mathbf{AB})|\mathbf{a}\rangle = \mathbf{A}(\mathbf{B}|\mathbf{a}\rangle)$
- ► BUT note that *in general* $(AB)|a\rangle \neq (BA)|a\rangle$ i.e. not commutative.

This is maybe not so obvious, so more about this when we cover matrices.

7.4.1 Examples of linear operators

- ► Momentum operator in quantum mechanics $-i\hbar \frac{d}{dx}$ $-i\hbar \frac{d}{dx}(|\mathbf{a}\rangle + |\mathbf{b}\rangle) = -i\hbar \frac{d}{dx}|\mathbf{a}\rangle - i\hbar \frac{d}{dx}|\mathbf{b}\rangle$
- $|\mathbf{b}\rangle = \mathbf{A}|\mathbf{a}\rangle$ where $|\mathbf{a}\rangle$ is a simple complex number and $\mathbf{A} = re^{i\theta}$. The operator transforms $|\mathbf{a}\rangle$ by scaling it by a factor *r* and rotating it by an angle θ in the Argand diagram.

• Example of an operator that in *not* linear: $A|\mathbf{a}\rangle = |\mathbf{a}\rangle^2$ since

 $A(|\mathbf{a}\rangle + |\mathbf{b}\rangle) = (|\mathbf{a}\rangle + |\mathbf{b}\rangle)^2 \neq A|\mathbf{a}\rangle + A|\mathbf{b}\rangle \ [= |\mathbf{a}\rangle^2 + |\mathbf{b}\rangle^2]$

7.5 What is a matrix [1]

Definition :

A matrix is a linear operator forming an array of numbers which transforms vectors from an n-dimensional vector space (for which there is a basis $|\mathbf{e}_i\rangle$ with $i = 1, 2, \dots, n$)) into vectors belonging to an m-dimensional vector space (with a basis $|\mathbf{e}'_i\rangle$ with $i = 1, 2, \dots, m$)).

What is a matrix [2]

Alternatively :

A matrix is made up of a set of numbers (or operators), arranged in rows and columns :-

• A 2D matrix with *m* rows and *n* columns has *size* $m \times n$.

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$$
(8)

- The matrix elements of A are A_{ij} (i.e. the ith row and jth column components of a linear operator). The A_{ij} can also be complex.
- Note the following:
 - A 1 \times 1 matrix is a scalar.
 - An m × 1 (1D) matrix is a column vector; a 1 × n matrix is a row vector.
 - If m = n, then A is an $n \times n$ square matrix of order n.