LECTURE 7: INNER PRODUCTS, LINEAR OPERATORS AND INTRODUCTION TO MATRICES

Prof. N. Harnew
University of Oxford
MT 2012

Outline: 7. INNER PRODUCTS, LINEAR OPERATORS AND INTRODUCTION TO MATRICES

7.1 The scalar (inner) product

- 3D vectors : simple example of a 1D matrix
- The scalar (inner) product : imaginary vectors
7.2 Inner product \& basis vectors
7.3 Dual vectors and dual vector spaces
7.4 Linear operators
7.4.1 Examples of linear operators
7.4 What is a matrix

7.1 The scalar (inner) product

First consider REAL vectors

- The inner product of two vectors $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ in an N dimensional vector space is denoted by $\langle\mathbf{a} \mid \mathbf{b}\rangle$
- The inner product of real vectors $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ in N dimensions (provided the basis vectors are orthogonal):

$$
\langle\mathbf{a} \mid \mathbf{b}\rangle=\underline{\mathbf{a}}^{T} \cdot \underline{\mathbf{b}}=\left(a_{1}, a_{2}, \ldots a_{N}\right) \cdot\left(\begin{array}{c}
b_{1} \tag{1}\\
b_{2} \\
\cdot \\
b_{N}
\end{array}\right)=\sum_{i=1}^{N} a_{i} b_{i}
$$

- Here $\langle\mathbf{a}|$ is the transpose of $|\mathbf{a}\rangle$.
- The inner product is a scalar.
- The norm of $|\mathbf{a}\rangle$, i.e. $\| \mathbf{a}\rangle \mid$, is given by $\sqrt{ }\langle\mathbf{a} \mid \mathbf{a}\rangle$ and is a measure of (real) length : $|\underline{\mathbf{a}}|=\sqrt{\underline{\mathbf{a}}^{\top} \cdot \underline{\mathbf{a}}}=\sqrt{\sum_{i=1}^{N} a_{i}^{2}}$.
Other properties:
- $\langle\mathbf{a} \mid \mathbf{b}\rangle=\langle\mathbf{b} \mid \mathbf{a}\rangle$ for real vectors.
- If $|\mathbf{c}\rangle=\alpha|\mathbf{a}\rangle+\beta|\mathbf{b}\rangle$ then $\langle\mathbf{d} \mid \mathbf{c}\rangle=\alpha\langle\mathbf{d} \mid \mathbf{a}\rangle+\beta\langle\mathbf{d} \mid \mathbf{b}\rangle$
- $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ are orthogonal if $\langle\mathbf{a} \mid \mathbf{b}\rangle=\langle\mathbf{b} \mid \mathbf{a}\rangle=0$
$3 D$ vectors : simple example of a $1 D$ matrix
- Take a (real) 3D coordinate system with orthogonal unit vectors $\left|\mathbf{e}_{\mathbf{x}}\right\rangle,\left|\mathbf{e}_{\mathbf{y}}\right\rangle,\left|\mathbf{e}_{\mathbf{z}}\right\rangle \quad(\equiv \underline{\mathbf{i}}, \underline{\mathbf{j}}, \underline{\mathbf{k}})$
- Represent vector $|\mathbf{a}\rangle$ in the form of a one dimensional column matrix.

$$
|\mathbf{a}\rangle \equiv \underline{\mathbf{a}}=\left(\begin{array}{l}
a_{x} \tag{2}\\
a_{y} \\
a_{z}
\end{array}\right)
$$

where $|\mathbf{a}\rangle=a_{x}\left|\mathbf{e}_{\mathbf{x}}\right\rangle+a_{y}\left|\mathbf{e}_{\mathbf{y}}\right\rangle+a_{z}\left|\mathbf{e}_{\mathbf{z}}\right\rangle$.

- Define the transpose of the vector (matrix) by interchanging rows and columns:

$$
\left\langle\mathbf{u m n s}: \underline{\mathbf{a}}^{T}=\left(\begin{array}{c}
a_{x} \tag{3}\\
a_{y} \\
a_{z}
\end{array}\right)^{T}=\left(a_{x}, a_{y}, a_{z}\right) .\right.
$$

- The scalar product of two vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ then becomes:

$$
\langle\mathbf{a} \mid \mathbf{b}\rangle \equiv \underline{\mathbf{a}}^{\top} \cdot \underline{\mathbf{b}}=\left(a_{x}, a_{y}, a_{z}\right) \cdot\left(\begin{array}{c}
b_{x} \tag{4}\\
b_{y} \\
b_{z}
\end{array}\right)=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} .
$$

The scalar (inner) product : imaginary vectors

Now consider IMAGINARY vectors

- In complex vector spaces with $|\mathbf{a}\rangle$ complex we want $|\underline{\mathbf{a}}|$ to be a "length" (a real and positive number). Hence $\langle\mathbf{a} \mid \mathbf{a}\rangle$ must become $\underline{\mathbf{a}}^{\dagger} . \underline{\mathbf{a}}$ where $\underline{\mathbf{a}}^{\dagger}=\underline{\mathbf{a}}^{T *}$ (transpose, then complex conjugate) :
$|\underline{\mathbf{a}}|=\sqrt{\underline{\mathbf{a}}^{\dagger} \cdot \underline{\mathbf{a}}}=\sqrt{\sum_{i=1}^{N} a_{i}^{*} a_{i}}$
- The inner product of $|\mathbf{a}\rangle,|\mathbf{b}\rangle$ is again represented by $\langle\mathbf{a} \mid \mathbf{b}\rangle$ and is now a complex number.
- If $|\mathbf{a}\rangle,|\mathbf{b}\rangle$ are complex, inner product becomes:

$$
\langle\mathbf{a} \mid \mathbf{b}\rangle=\underline{\mathbf{a}}^{\dagger} \cdot \underline{\mathbf{b}}=\left(a_{1}^{*}, a_{2}^{*}, \ldots a_{N}^{*}\right) \cdot\left(\begin{array}{c}
b_{1} \tag{5}\\
b_{2} \\
\dot{b_{N}}
\end{array}\right)=\sum_{i=1}^{N} a_{i}^{*} b_{i}
$$

Other properties:
For imaginary vectors $\quad\langle\mathbf{a} \mid \mathbf{b}\rangle=\langle\mathbf{b} \mid \mathbf{a}\rangle^{*}$

- Again if $|\mathbf{c}\rangle=\alpha|\mathbf{a}\rangle+\beta|\mathbf{b}\rangle$ then $\langle\mathbf{d} \mid \mathbf{c}\rangle=\alpha\langle\mathbf{d} \mid \mathbf{a}\rangle+\beta\langle\mathbf{d} \mid \mathbf{b}\rangle$
- $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ are orthogonal if $\langle\mathbf{a} \mid \mathbf{b}\rangle=\langle\mathbf{b} \mid \mathbf{a}\rangle=0$

7.2 Inner product \& basis vectors

- Basis vectors which are mutually orthogonal and each having norm = 1 are said to be orthonormal: i.e. $\left\langle\mathbf{e}_{\mathbf{i}} \mid \mathbf{e}_{\mathbf{j}}\right\rangle=\delta_{i j}$ where $\delta_{i j}$ is the "Kronecker delta" - $\delta_{i j}=1$ for $\mathrm{i}=\mathrm{j}, \quad \delta_{i j}=0$ for $\mathrm{i} \neq \mathrm{j}$.
- The inner product of $|\mathbf{a}\rangle$ with the $j^{\text {th }}$ element of the orthonormal basis vector $\left|\mathbf{e}_{\mathrm{j}}\right\rangle$ will "project out" the $\mathrm{j}^{\text {th }}$ component of $|\mathbf{a}\rangle$:

$$
\begin{aligned}
& \quad|\mathbf{a}\rangle=\sum_{i=1}^{N} a_{i}\left|\mathbf{e}_{\mathbf{i}}\right\rangle \\
& -\left\langle\mathbf{e}_{\mathbf{j}} \mid \mathbf{a}\right\rangle=\sum_{i=1}^{N}\left\langle\mathbf{e}_{\mathbf{j}} \mid a_{i} \mathbf{e}_{\mathbf{i}}\right\rangle=\sum_{i=1}^{N} a_{i}\left\langle\mathbf{e}_{\mathbf{j}} \mid \mathbf{e}_{\mathbf{i}}\right\rangle=a_{j}
\end{aligned}
$$

- If the basis vectors defining $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ are orthonormal: then, the inner product is :

$$
\begin{aligned}
\langle\mathbf{a} \mid \mathbf{b}\rangle & =\left\langle a_{1} \mathbf{e}_{\mathbf{1}}+\cdots+a_{N} \mathbf{e}_{\mathbf{N}} \mid b_{b_{1}} \mathbf{e}_{\mathbf{1}}+\cdots+b_{N} \mathbf{e}_{\mathbf{N}}\right\rangle \\
& =\sum_{i=1}^{N} a_{i}^{*} b_{i}\left\langle\mathbf{e}_{\mathbf{i}} \mid \mathbf{e}_{\mathbf{i}}\right\rangle+\sum_{i=1}^{N} \sum_{j \neq i}^{N} a_{i}^{*} b_{j}\left\langle\mathbf{e}_{\mathbf{i}} \mid \mathbf{e}_{\mathbf{j}}\right\rangle \\
& =\sum_{i=1}^{N} a_{i}^{*} b_{i}
\end{aligned}
$$

So orthornormality of the basis vectors is important.

7.3 Dual vectors and dual vector spaces

- A "linear map" (or "linear functional") is an operation that takes a real (or complex) vector as input and gives a real \Re (or complex §) number as output.
- Every vector space V has a "dual" vector space V^{*} : the space of all possible linear maps from $V \rightarrow \Re$ or $V \rightarrow \Im$.
- The most common example of a dual vector space is if V is the space of real column vectors, V^{*} is then the space of real row vectors : inner product maps V to a real number \Re

$$
\begin{align*}
&\langle\mathbf{a} \mid \mathbf{b}\rangle=\underline{\mathbf{a}}^{T} \cdot \underline{\mathbf{b}}=\left(a_{1}, a_{2}, \ldots a_{N}\right) \cdot\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
b_{N}
\end{array}\right)=\sum_{i=1}^{N} a_{i} b_{i} \tag{6}\\
& \rightarrow \underline{\mathbf{a}}^{T} \text { is the dual vector of } \underline{\mathbf{a}}
\end{align*}
$$

- If $|\mathbf{a}\rangle,|\mathbf{b}\rangle$ are complex, inner product maps V to an imaginary number \Im

$$
\langle\mathbf{a} \mid \mathbf{b}\rangle=\underline{\mathbf{a}}^{\dagger} \cdot \underline{\mathbf{b}}=\left(a_{1}^{*}, a_{2}^{*}, \ldots a_{N}^{*}\right) \cdot\left(\begin{array}{c}
b_{1} \tag{7}\\
b_{2} \\
\dot{b_{2}} \\
b_{N}
\end{array}\right)=\sum_{i=1}^{N} \underline{\mathbf{a}}^{\dagger} \text { is the dual vector of } \underline{a_{i}}
$$

- Note that the dual vector of $\lambda \underline{\mathbf{a}}$ is $\lambda^{*} \underline{\mathbf{a}}^{\dagger}$ (λ is a scalar)

7.4 Linear operators

A linear operator A transforms a vector $|\mathrm{x}\rangle$ to give another vector $|\mathbf{y}\rangle$

$$
|\mathbf{y}\rangle=\mathbf{A}|\mathbf{x}\rangle
$$

A is linear because of the following requirements:

- For vectors $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ and scalars λ and μ

$$
\mathbf{A}(\lambda|\mathbf{a}\rangle+\mu|\mathbf{b}\rangle)=\lambda \mathbf{A}|\mathbf{a}\rangle+\mu \mathbf{A}|\mathbf{b}\rangle \text { (associative and distributive). }
$$

- For linear operators $\mathbf{A}, \mathbf{B}, \mathbf{C}$ where
$\mathbf{C}=\mathbf{A}+\mathbf{B}$
$\Rightarrow \mathbf{C}|\mathbf{a}\rangle=(\mathbf{A}+\mathbf{B})|\mathbf{a}\rangle=(\mathbf{B}+\mathbf{A})|\mathbf{a}\rangle=\mathbf{A}|\mathbf{a}\rangle+\mathbf{B}|\mathbf{a}\rangle$ (distributive)
- For linear operators $\mathbf{D}=\mathbf{A} . \mathbf{B}$
$\mathbf{D}|\mathbf{a}\rangle=(\mathbf{A B})|\mathbf{a}\rangle=\mathbf{A}(\mathbf{B}|\mathbf{a}\rangle)$
- BUT note that in general ($\mathbf{A B}$) $|\mathbf{a}\rangle \neq(\mathbf{B A})|\mathbf{a}\rangle$
i.e. not commutative.

This is maybe not so obvious, so more about this when we cover matrices.

7.4.1 Examples of linear operators

- Momentum operator in quantum mechanics $-i \hbar \frac{d}{d x}$

$$
-i \hbar \frac{d}{d x}(|\mathbf{a}\rangle+|\mathbf{b}\rangle)=-i \hbar \frac{d}{d x}|\mathbf{a}\rangle-i \hbar \frac{d}{d x}|\mathbf{b}\rangle
$$

- $|\mathbf{b}\rangle=\mathbf{A}|\mathbf{a}\rangle$ where $|\mathbf{a}\rangle$ is a

- Example of an operator that in not linear: $A|\mathbf{a}\rangle=|\mathbf{a}\rangle^{2}$ since

$$
A(|\mathbf{a}\rangle+|\mathbf{b}\rangle)=(|\mathbf{a}\rangle+|\mathbf{b}\rangle)^{2} \neq A|\mathbf{a}\rangle+A|\mathbf{b}\rangle\left[=|\mathbf{a}\rangle^{2}+|\mathbf{b}\rangle^{2}\right]
$$

7.5 What is a matrix [1]

- Definition :

A matrix is a linear operator forming an array of numbers which transforms vectors from an n-dimensional vector space (for which there is a basis $\left|\mathbf{e}_{\mathbf{i}}\right\rangle$ with $i=1,2, \cdots, n$)) into vectors belonging to an m-dimensional vector space (with a basis $\left|\mathbf{e}_{\mathbf{i}}^{\prime}\right\rangle$ with $i=1,2, \cdots, m$).

What is a matrix [2]

- Alternatively :

A matrix is made up of a set of numbers (or operators), arranged in rows and columns :-

- A 2D matrix with m rows and n columns has size $m \times n$.

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \tag{8}\\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right)
$$

- The matrix elements of A are $A_{i j}$ (i.e. the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column - components of a linear operator). The $A_{i j}$ can also be complex.
- Note the following:
- A 1×1 matrix is a scalar.
- An $m \times 1$ (1D) matrix is a column vector; a $1 \times n$ matrix is a row vector.
- If $m=n$, then A is an $n \times n$ square matrix of order n.

