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6.1 Linear vector spaces

I Up to now we have considered 3D space where the
components of a vector are a = (ax i + ay j + azk) with
respect to the Cartesian coordinate system.

I We now extend to more abstract spaces which can have
an arbitrary number of N dimensions. A vector is still an
“arrow” in this linear vector space.

I An example of a linear vector space could be any system
where N variables can uniquely specify the state - e.g.
N = 5 : [energy, angle, mass, charge, spin] of a moving
body.
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6.1.1 Notation

I To represent an object in linear vector space we now
introduce Dirac notation→ |a〉 (this can of course also
represent a “standard” vector in 3D space).

I This notation is widely used in quantum mechanics:

I “ket” vector |a〉 (the standard representation for an
object in linear vector space)

I “bra” vector 〈a| (the complex conjugate of |a〉 and its
transpose (see later))

I “bra-ket” 〈a|b〉 (specifies the “inner product”).
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6.1.2 Definitions

Start with a set V of objects (vectors).

Definition – V forms a linear vector space if:

I V is “closed” under addition:
i.e. if the vectors |a〉 and |b〉 are elements of V , then the
vector |a〉+ |b〉 is also an element of V .
(i.e. |a〉, |b〉 ε V ⇒ |a〉+ |b〉 ε V ).
Addition must be commutative and associative
|a〉+ |b〉 = |b〉+ |a〉 and
(|a〉+ |b〉) + |c〉 = |a〉+ (|b〉+ |c〉)

I V is closed under multiplication by a scalar:
i.e. if the vector |a〉 is an element of V , then the vector λ|a〉
is also an element of V
(i.e. |a〉 ε V ⇒ λ|a〉 ε V ).
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Definitions, continued

I Multiplication by a scalar must be associative and
distributive.

I λ(|a〉+ |b〉) = λ|a〉+ λ|b〉 and
I (λ+ µ)|a〉 = λ|a〉+ µ|a〉 and
I λ(µ|a〉) = (λµ)|a〉

I There exists a null (zero) element |0〉 ε V
I |0〉+ |a〉 = |a〉

I Multiplication by unity leaves any vector unchanged
I 1× |a〉 = |a〉

I If the vector |a〉 is an element of V , then the vector |a′〉 is
also an element of V with the property:

I |a〉 + |a′〉 = 0
I i.e. |a′〉 = |a〉 × (−1)
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6.1.3 Examples of linear vector spaces
I Obviously spatial 3D vectors form a linear vector space.
I < (the real numbers) form a (real) linear vector space. The

“vectors” in this space are simply the real numbers. Addition and
multiplication (by real numbers) fulfill all the above requirements
on a linear vector space. The null element is the number zero.

I = (the complex numbers) form a complex linear vector space.
The vectors in this space are simply the complex numbers.

I The spherical harmonics which are angular functions Y m
l (θ, φ): a

few examples:
I Y 0

0 (θ, φ) =
√
(1/4π)

I Y−1
1 (θ, φ) =

√
(3/8π)sin θ e−iφ

I Y 0
1 (θ, φ) =

√
(3/4π)cos θ

I Y 1
1 (θ, φ) =

√
(3/8π)sin θ e+iφ

I Y 0
2 (θ, φ) =

√
(5/16π)(3cos2θ − 1) etc.

(these functions form a “basis” set of wavefunctions in quantum
mechanics).
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6.2 Linear dependent and independent vectors
I |ai〉i=1...N is a set of N vectors in a given space and αi is a set of

scalars. The linear combination of the vectors |ai〉 with
coefficients αi is given by

α1|a1〉+ α2|a2〉+ · · ·+ αn|an〉 =
∑N

i=1 αi |ai〉
I Example in a 3D coordinate system: here N = 3 and the vectors
|ai〉 can be the three unit (base) vectors (1, 0, 0), (0, 1, 0), (0,
0, 1) and the coefficients are the components (ax ,ay ,az).

I A set of vectors is said to be linearly dependent if for some αi∑N
i=1 αi |ai〉 = 0

i.e. this means that at least one vector is redundant, and can be
expressed as a linear sum of the others.

I However if
∑N

i=1 αi |ai〉 6= 0
for any set of coefficients αi (other than the trivial case αi = 0, for
all i) then the vectors are said to be linearly independent .
i.e. this means that when vectors are linearly independent, none
of the vectors can be obtained as a combination of the others.
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6.2.1 Examples

a) |a1〉 = (0,1) and |a2〉 = (1,0) are linearly independent (since
α1|a1〉+ α2|a2〉 can never be 0).

b) |a1〉 = (0,1) and |a2〉 = (1,1) are linearly independent (even
though these vectors are not orthogonal).

c) |a1〉 = (0,1) and |a2〉 = (1,0) and |a3〉 = (5,1) are linearly
dependent since
|a1〉 + 5|a2〉 - |a3〉 = 0.

d) In a 3D space (1, 0, 0), (0, 1, 0), (0, 0, 1) define a 3D
vector space; linear independence is naturally related to
the orthogonality of these base vectors.

Quantum Mechanics makes fundamental use out of these
apparently simple concepts.
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6.3 Basis vectors in N dimensions

I If there exists N linearly independent vectors, the vector
space is said to be N-dimensional.

I Consider a linear vector space V with a basis set of N
linearly independent vectors, |e1〉, |e2〉 · · · |eN〉.
Any general vector |a〉 can be expressed as a linear sum of
base vectors |ei〉 with scalar coefficients ai :

|a〉 = a1|e1〉+ a2|e2〉+ · · ·+ aN |eN〉 =
∑N

i=1 ai |ei〉

I The base vectors are said to form a complete set for that
space (i.e., any vector of the space can be uniquely
expressed as a linear combination of these vectors).

I Base vectors for an N-dimensional space are not unique -
any set of N linear independent vectors can form a basis
for the space.
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