LECTURE 6: LINEAR VECTOR SPACES, BASIS VECTORS AND LINEAR INDEPENDENCE

Prof. N. Harnew
University of Oxford

MT 2012

Outline: 6. LINEAR VECTOR SPACES, BASIS VECTORS AND LINEAR INDEPENDENCE

6.1 Linear vector spaces
6.1.1 Notation
6.1.2 Definitions
6.1.3 Examples of linear vector spaces
6.2 Linear dependent and independent vectors 6.2.1 Examples
6.3 Basis vectors in N dimensions

6.1 Linear vector spaces

- Up to now we have considered 3D space where the components of a vector are $\underline{\mathbf{a}}=\left(a_{x} \underline{\mathbf{i}}+a_{y} \underline{\underline{j}}+a_{z} \underline{\mathbf{k}}\right)$ with respect to the Cartesian coordinate system.
- We now extend to more abstract spaces which can have an arbitrary number of N dimensions. A vector is still an "arrow" in this linear vector space.
- An example of a linear vector space could be any system where N variables can uniquely specify the state - e.g. $N=5$: [energy, angle, mass, charge, spin] of a moving body.

6.1.1 Notation

- To represent an object in linear vector space we now introduce Dirac notation $\rightarrow \quad|\mathbf{a}\rangle \quad$ (this can of course also represent a "standard" vector in 3D space).
- This notation is widely used in quantum mechanics:
- "ket" vector $|\mathrm{a}\rangle$ (the standard representation for an object in linear vector space)
- "bra" vector $\langle\mathbf{a}| \quad$ (the complex conjugate of $|\mathbf{a}\rangle$ and its transpose (see later))
- "bra-ket" $\langle\mathrm{a} \mid \mathrm{b}\rangle \quad$ (specifies the "inner product").

6.1.2 Definitions

Start with a set V of objects (vectors).
Definition - V forms a linear vector space if:

- V is "closed" under addition:
i.e. if the vectors $|\mathbf{a}\rangle$ and $|\mathbf{b}\rangle$ are elements of V, then the vector $|\mathbf{a}\rangle+|\mathbf{b}\rangle$ is also an element of V.
(i.e. $|\mathbf{a}\rangle,|\mathbf{b}\rangle \in V \Rightarrow|\mathbf{a}\rangle+|\mathbf{b}\rangle \in V$).

Addition must be commutative and associative
$|\mathbf{a}\rangle+|\mathbf{b}\rangle=|\mathbf{b}\rangle+|\mathbf{a}\rangle$ and
$(|\mathbf{a}\rangle+|\mathbf{b}\rangle)+|\mathbf{c}\rangle=|\mathbf{a}\rangle+(|\mathbf{b}\rangle+|\mathbf{c}\rangle)$

- V is closed under multiplication by a scalar:
i.e. if the vector $|\mathbf{a}\rangle$ is an element of V, then the vector $\lambda|\mathbf{a}\rangle$ is also an element of V
(i.e. $|\mathbf{a}\rangle \in V \Rightarrow \lambda|\mathbf{a}\rangle \in V$).

Definitions, continued

- Multiplication by a scalar must be associative and distributive.
- $\lambda(|\mathbf{a}\rangle+|\mathbf{b}\rangle)=\lambda|\mathbf{a}\rangle+\lambda|\mathbf{b}\rangle$ and
- $(\lambda+\mu)|\mathbf{a}\rangle=\lambda|\mathbf{a}\rangle+\mu|\mathbf{a}\rangle$ and
- $\lambda(\mu|\mathbf{a}\rangle)=(\lambda \mu)|\mathbf{a}\rangle$
- There exists a null (zero) element $|0\rangle \in V$
- $|\mathbf{0}\rangle+|\mathbf{a}\rangle=|\mathbf{a}\rangle$
- Multiplication by unity leaves any vector unchanged
- $1 \times|\mathbf{a}\rangle=|\mathbf{a}\rangle$
- If the vector $|\mathbf{a}\rangle$ is an element of V, then the vector $\left|\mathbf{a}^{\prime}\right\rangle$ is also an element of V with the property:
- $|\mathbf{a}\rangle+\left|\mathbf{a}^{\prime}\right\rangle=0$
- i.e. $\left|\mathbf{a}^{\prime}\right\rangle=|\mathbf{a}\rangle \times(-1)$

6.1.3 Examples of linear vector spaces

- Obviously spatial 3D vectors form a linear vector space.
- \Re (the real numbers) form a (real) linear vector space. The "vectors" in this space are simply the real numbers. Addition and multiplication (by real numbers) fulfill all the above requirements on a linear vector space. The null element is the number zero.
- \Im (the complex numbers) form a complex linear vector space. The vectors in this space are simply the complex numbers.
- The spherical harmonics which are angular functions $Y_{1}^{m}(\theta, \phi)$: a few examples:
- $Y_{0}^{0}(\theta, \phi)=\sqrt{ }(1 / 4 \pi)$
- $Y_{1}^{-1}(\theta, \phi)=\sqrt{ }(3 / 8 \pi) \sin \theta e^{-i \phi}$
- $Y_{1}^{0}(\theta, \phi)=\sqrt{ }(3 / 4 \pi) \cos \theta$
- $Y_{1}^{1}(\theta, \phi)=\sqrt{ }(3 / 8 \pi) \sin \theta e^{+i \phi}$
- $Y_{2}^{0}(\theta, \phi)=\sqrt{ }(5 / 16 \pi)\left(3 \cos ^{2} \theta-1\right) \quad$ etc.
(these functions form a "basis" set of wavefunctions in quantum mechanics).

6.2 Linear dependent and independent vectors

- $\left|\mathbf{a}_{\mathbf{i}}\right\rangle_{j=1 \ldots N}$ is a set of N vectors in a given space and α_{i} is a set of scalars. The linear combination of the vectors $\left|\mathbf{a}_{\mathbf{i}}\right\rangle$ with coefficients α_{i} is given by

$$
\alpha_{1}\left|\mathbf{a}_{1}\right\rangle+\alpha_{2}\left|\mathbf{a}_{2}\right\rangle+\cdots+\alpha_{n}\left|\mathbf{a}_{\mathbf{n}}\right\rangle=\sum_{i=1}^{N} \alpha_{i}\left|\mathbf{a}_{\mathbf{i}}\right\rangle
$$

- Example in a 3D coordinate system: here $\mathrm{N}=3$ and the vectors $\left|\mathbf{a}_{\mathbf{i}}\right\rangle$ can be the three unit (base) vectors ($1,0,0$), ($0,1,0$), (0 , $0,1)$ and the coefficients are the components (a_{x}, a_{y}, a_{z}).
- A set of vectors is said to be linearly dependent if for some α_{i}

$$
\sum_{i=1}^{N} \alpha_{i}\left|\mathbf{a}_{\mathbf{i}}\right\rangle=0
$$

i.e. this means that at least one vector is redundant, and can be expressed as a linear sum of the others.

- However if $\quad \sum_{i=1}^{N} \alpha_{i}\left|\mathbf{a}_{\mathbf{i}}\right\rangle \neq 0$ for any set of coefficients α_{i} (other than the trivial case $\alpha_{i}=0$, for all i) then the vectors are said to be linearly independent. i.e. this means that when vectors are linearly independent, none of the vectors can be obtained as a combination of the others.

6.2.1 Examples

a) $\left|\mathbf{a}_{\mathbf{1}}\right\rangle=(0,1)$ and $\left|\mathbf{a}_{\mathbf{2}}\right\rangle=(1,0)$ are linearly independent (since $\alpha_{1}\left|\mathbf{a}_{1}\right\rangle+\alpha_{2}\left|\mathbf{a}_{2}\right\rangle$ can never be 0).
b) $\left|\mathbf{a}_{\mathbf{1}}\right\rangle=(0,1)$ and $\left|\mathbf{a}_{\mathbf{2}}\right\rangle=(1,1)$ are linearly independent (even though these vectors are not orthogonal).
c) $\left|\mathbf{a}_{1}\right\rangle=(0,1)$ and $\left|\mathbf{a}_{2}\right\rangle=(1,0)$ and $\left|\mathbf{a}_{3}\right\rangle=(5,1)$ are linearly dependent since $\left|\mathbf{a}_{1}\right\rangle+5\left|\mathbf{a}_{2}\right\rangle-\left|\mathbf{a}_{3}\right\rangle=0$.
d) In a 3D space $(1,0,0),(0,1,0),(0,0,1)$ define a 3D vector space; linear independence is naturally related to the orthogonality of these base vectors.

Quantum Mechanics makes fundamental use out of these apparently simple concepts.

6.3 Basis vectors in N dimensions

- If there exists N linearly independent vectors, the vector space is said to be N -dimensional.
- Consider a linear vector space V with a basis set of N linearly independent vectors, $\left|\mathbf{e}_{\mathbf{1}}\right\rangle,\left|\mathbf{e}_{\mathbf{2}}\right\rangle \cdots\left|\mathbf{e}_{\mathbf{N}}\right\rangle$. Any general vector $|\mathbf{a}\rangle$ can be expressed as a linear sum of base vectors $\left|\mathbf{e}_{\mathbf{i}}\right\rangle$ with scalar coefficients a_{i} :

$$
|\mathbf{a}\rangle=a_{1}\left|\mathbf{e}_{\mathbf{1}}\right\rangle+a_{2}\left|\mathbf{e}_{2}\right\rangle+\cdots+a_{N}\left|\mathbf{e}_{\mathbf{N}}\right\rangle=\sum_{i=1}^{N} a_{i}\left|\mathbf{e}_{\mathbf{i}}\right\rangle
$$

- The base vectors are said to form a complete set for that space (i.e., any vector of the space can be uniquely expressed as a linear combination of these vectors).
- Base vectors for an N-dimensional space are not unique any set of N linear independent vectors can form a basis for the space.

