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OUTLINE : 4. NEWTON’S LAWS

4.1 Newton’s Second Law

4.2 Newton’s Third Law

4.3 Energy conservation in one dimension
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4.1 Newton’s Second Law

The rate of change of momentum of a body is equal to the
applied force on the body.

I F =
dp
dt = ma where p = mv

I In components: (Fx ,Fy ,Fz) = m(ax ,ay ,az)

I Assuming constant mass, we can define the equation of

motion in 1D : F = d(mv)
dt = md2x

dt2

I We require two initial conditions for a unique solution: e.g.
v = v0 at t = 0 and x = x0 at t = 0

We shall later solve the EOM for three examples:
(i) F = constant, (ii) F ∝ −v , (iii) F ∝ −x
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4.2 Newton’s Third Law

Action and reaction forces are equal in magnitude and opposite
in direction.

Electrostatic interaction

Compressed spring

F12 = −F21
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Conservation of momentum

Compressed spring

I F12 = m1a1 =
dP1

dt and F21 = m2a2 =
dP2

dt

I F12 + F21 = d
dt (P1 + P2) = 0 (Newton III)

I Therefore (P1 + P2) = constant

In an isolated system, the total momentum is conserved.
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Newton II : Example 1. E.O.M. under constant force

How fast should we accelerate the triangular wedge to keep the
block m stationary on the wedge?

Forces on wedge:

I Horizontal: Fex − Fi sin θ = MAx

I Vertical: R − Fi cos θ −Mg = 0

Forces on block:

I Horizontal: Fi sin θ = max

I Vertical: Fi cos θ −mg = may

For block to remain at the same place Ax = ax and ay = 0

I Fi = mg
cos θ and ax = g tan θ = Ax

I Hence Fex = Mg tan θ + mg tan θ = (m + M)g tan θ
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Example constant force, continued

What is the internal force that the blocks apply on each other
and the reaction force by the ground on M?

From before:

I Fi = mg
cos θ

I R − Fi cos θ −Mg = 0

I Hence: R = Fi cos θ + Mg = (m + M)g
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Example 2. Force proportional to velocity
Solve the equation of motion for the case F = −βv (β > 0)
with x = x0 and v = v0 at t = 0

I m dv
dt = −βv

I dv
dt = −αv where α = β

m

I
∫ v

v0

dv
v = −α

∫ t
0 dt → v = v0e−αt

I v = dx
dt →

∫ x
x0

dx =
∫ t

0 vdt =
∫ t

0 v0e−αtdt

I x − x0 = −v0
α e−αt + v0

α

I x = x0 + v0
α (1− e−αt )

I When t →∞, x → x0 + v0
α
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Example 3. Force proportional to position: simple
harmonic oscillator

Solving the equation of motion for the case F = m d2x
dt2 = −kx

I m d2x
dt2 + k

m x = 0 ; trial solution x = A cosωt + B sinωt

→ ẋ = −Aω sinωt + Bω cosωt ; ẍ = −Aω2 cosωt − Bω2 sinωt
I ẍ = −ω2x → ω2 = k

m

I Alternatively x = x0 cos(ωt + φ) (or x = x0Re[ei(αt+φ)] )
I Expand : x = x0(cos(ωt) cosφ− sin(ωt) sinφ)

A = x0 cosφ ; B = −x0 sinφ → x2
0 = A2 + B2 ; tanφ = −B/A

I x0 = amplitude, φ = phase, ω = angular frequency (T = 2π
ω )
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I x = x0 cos(ωt + φ)

I ω =
√

k
m

I φ = ω∆t

10



4.3 Energy conservation in one dimension
Work done on a body by a force F

I W =
∫ x2

x1
F (x)dx = m

∫ x2
x1

dv
dt dx

I We can write: dv
dt dx = dx

dt dv = vdv

hence
∫ x2

x1
F (x)dx = m

∫ v2
v1

vdv = 1
2m(v2

2 − v2
1 ) = T2 − T1

I Now introduce an arbitrary reference point x0∫ x2
x1

Fdx =
∫ x2

x0
Fdx −

∫ x1
x0

Fdx defines a conservative force

hence T2 + [−
∫ x2

x0
Fdx ] = T1 + [−

∫ x1
x0

Fdx ]

I We define the potential energy U(x) at a point x :

U(x)− U(x0) = −
∫ x

x0
Fdx and hence

T2 + U2 = T1 + U1 (total energy PE + KE conserved)
I Note the minus sign. The potential energy (relative to a

reference point) is always the negative of the work done by
the force→ F (x) = −dU

dx
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