Classical Mechanics

LECTURE 4:
 NEWTON'S LAWS

Prof. N. Harnew
University of Oxford
MT 2016

OUTLINE : 4. NEWTON'S LAWS

4.1 Newton's Second Law
4.2 Newton's Third Law
4.3 Energy conservation in one dimension

4.1 Newton's Second Law

The rate of change of momentum of a body is equal to the applied force on the body.

- $\underline{\mathbf{F}}=\frac{d \underline{\mathbf{p}}}{d t}=m \underline{\mathbf{a}}$ where $\underline{\mathbf{p}}=m_{\underline{\mathbf{v}}}$
- In components: $\left(F_{x}, F_{y}, F_{z}\right)=m\left(a_{x}, a_{y}, a_{z}\right)$
- Assuming constant mass, we can define the equation of motion in 1D : $\quad F=\frac{d(m v)}{d t}=m \frac{d^{2} x}{d t^{2}}$
- We require two initial conditions for a unique solution: e.g. $v=v_{0}$ at $t=0$ and $x=x_{0}$ at $t=0$

We shall later solve the EOM for three examples:
(i) $F=$ constant, (ii) $F \propto-v$, (iii) $F \propto-x$

4.2 Newton's Third Law

Action and reaction forces are equal in magnitude and opposite in direction.

Electrostatic interaction

$$
\underline{\mathbf{F}}_{12}=-\underline{\mathbf{F}}_{21}
$$

Conservation of momentum

Compressed spring

- $\underline{\mathbf{F}}_{12}=m_{1} \underline{\mathbf{a}}_{1}=\frac{d \mathbf{\mathbf { P }}_{1}}{d t} \quad$ and $\quad \underline{\mathbf{F}}_{21}=m_{2} \underline{\mathbf{a}}_{2}=\frac{d \mathbf{\mathbf { P }}_{2}}{d t}$
- $\underline{\mathbf{F}}_{12}+\underline{\mathbf{F}}_{21}=\frac{d}{d t}\left(\underline{\mathbf{P}}_{1}+\underline{\mathbf{P}}_{2}\right)=0 \quad$ (Newton III)
- Therefore $\left(\underline{\mathbf{P}}_{1}+\underline{\mathbf{P}}_{2}\right)=\mathrm{constant}$

In an isolated system, the total momentum is conserved.

Newton II : Example 1. E.O.M. under constant force

 How fast should we accelerate the triangular wedge to keep the block m stationary on the wedge?

Forces on wedge:

- Horizontal: $F_{e x}-F_{i} \sin \theta=M A_{x}$
- Vertical: $R-F_{i} \cos \theta-M g=0$

Forces on block:

- Horizontal: $F_{i} \sin \theta=m a_{x}$
- Vertical: $F_{i} \cos \theta-m g=m a_{y}$

For block to remain at the same place $A_{x}=a_{x}$ and $a_{y}=0$

- $F_{i}=\frac{m g}{\cos \theta}$ and $a_{x}=g \tan \theta=A_{x}$
- Hence $F_{e x}=M g \tan \theta+m g \tan \theta=(m+M) g \tan \theta$

Example constant force, continued

What is the internal force that the blocks apply on each other and the reaction force by the ground on M ?

From before:

- $F_{i}=\frac{m g}{\cos \theta}$
- $R-F_{i} \cos \theta-M g=0$
- Hence: $R=F_{i} \cos \theta+M g=(m+M) g$

Example 2. Force proportional to velocity

Solve the equation of motion for the case $F=-\beta v(\beta>0)$ with $x=x_{0}$ and $v=v_{0}$ at $t=0$

- $m \frac{d v}{d t}=-\beta v$
- $\frac{d v}{d t}=-\alpha v$ where $\alpha=\frac{\beta}{m}$
- $\int_{v_{0}}^{v} \frac{d v}{v}=-\alpha \int_{0}^{t} d t \rightarrow \quad v=v_{0} \mathrm{e}^{-\alpha t}$
- $v=\frac{d x}{d t} \rightarrow \int_{x_{0}}^{x} d x=\int_{0}^{t} v d t=\int_{0}^{t} v_{0} \mathrm{e}^{-\alpha t} d t$
- $x-x_{0}=-\frac{v_{0}}{\alpha} \mathrm{e}^{-\alpha t}+\frac{v_{0}}{\alpha}$
- $x=x_{0}+\frac{v_{0}}{\alpha}\left(1-e^{-\alpha t}\right)$
- When $t \rightarrow \infty, x \rightarrow x_{0}+\frac{v_{0}}{\alpha}$

Example 3. Force proportional to position: simple

harmonic oscillator

Solving the equation of motion for the case $F=m \frac{d^{2} x}{d t^{2}}=-k x$

- $m \frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0$; trial solution $x=A \cos \omega t+B \sin \omega t$

$$
\rightarrow \dot{x}=-A \omega \sin \omega t+B \omega \cos \omega t ; \ddot{x}=-A \omega^{2} \cos \omega t-B \omega^{2} \sin \omega t
$$

- $\ddot{x}=-\omega^{2} x \rightarrow \omega^{2}=\frac{k}{m}$
- Alternatively $x=x_{0} \cos (\omega t+\phi) \quad\left(\right.$ or $\left.x=x_{0} \operatorname{Re}\left[e^{i(\alpha t+\phi)}\right]\right)$
- Expand : $x=x_{0}(\cos (\omega t) \cos \phi-\sin (\omega t) \sin \phi)$

$$
A=x_{0} \cos \phi ; B=-x_{0} \sin \phi \rightarrow x_{0}^{2}=A^{2}+B^{2} ; \tan \phi=-B / A
$$

- $x_{0}=$ amplitude, $\phi=$ phase, $\omega=$ angular frequency $\left(T=\frac{2 \pi}{\omega}\right)$

4.3 Energy conservation in one dimension

Work done on a body by a force F

- $W=\int_{x_{1}}^{x_{2}} F(x) d x=m \int_{x_{1}}^{x_{2}} \frac{d v}{d t} d x$
- We can write: $\frac{d v}{d t} d x=\frac{d x}{d t} d v=v d v$ hence $\int_{x_{1}}^{x_{2}} F(x) d x=m \int_{v_{1}}^{v_{2}} v d v=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)=T_{2}-T_{1}$
- Now introduce an arbitrary reference point x_{0} $\int_{x_{1}}^{x_{2}} F d x=\int_{x_{0}}^{x_{2}} F d x-\int_{x_{0}}^{x_{1}} F d x$ defines a conservative force hence $T_{2}+\left[-\int_{x_{0}}^{x_{2}} F d x\right]=T_{1}+\left[-\int_{x_{0}}^{x_{1}} F d x\right]$
- We define the potential energy $U(x)$ at a point x :
$U(x)-U\left(x_{0}\right)=-\int_{x_{0}}^{x} F d x$ and hence $T_{2}+U_{2}=T_{1}+U_{1}$ (total energy PE +KE conserved)
- Note the minus sign. The potential energy (relative to a reference point) is always the negative of the work done by the force $\rightarrow F(x)=-\frac{d U}{d x}$

