Classical Mechanics

LECTURE 4: NEWTON'S LAWS

Prof. N. Harnew University of Oxford MT 2016

1

OUTLINE : 4. NEWTON'S LAWS

4.1 Newton's Second Law

4.2 Newton's Third Law

4.3 Energy conservation in one dimension

4.1 Newton's Second Law

The rate of change of momentum of a body is equal to the applied force on the body.

- $\underline{\mathbf{F}} = \frac{d\mathbf{p}}{dt} = m\underline{\mathbf{a}}$ where $\underline{\mathbf{p}} = m\underline{\mathbf{v}}$
- In components: $(F_x, F_y, F_z) = m(a_x, a_y, a_z)$
- ► Assuming constant mass, we can define *the equation of* motion in 1D : $F = \frac{d(mv)}{dt} = m \frac{d^2x}{dt^2}$
- We require two initial conditions for a unique solution: e.g. v = v₀ at t = 0 and x = x₀ at t = 0

We shall later solve the EOM for three examples: (i) F = constant, (ii) $F \propto -v$, (iii) $F \propto -x$

4.2 Newton's Third Law

Action and reaction forces are equal in magnitude and opposite in direction.

Electrostatic interaction

$$\underline{\mathbf{F}}_{12} = -\underline{\mathbf{F}}_{21}$$

Conservation of momentum

In an isolated system, the total momentum is conserved.

Newton II : Example 1. E.O.M. under constant force

How fast should we accelerate the triangular wedge to keep the block *m* stationary on the wedge?

Forces on wedge:

- Horizontal: $F_{ex} F_i \sin \theta = MA_x$
- Vertical: $R F_i \cos \theta Mg = 0$

Forces on block:

- Horizontal: $F_i \sin \theta = ma_x$
- Vertical: $F_i \cos \theta mg = ma_y$

For block to remain at the same place $A_x = a_x$ and $a_y = 0$

•
$$F_i = \frac{mg}{\cos\theta}$$
 and $a_x = g \tan\theta = A_x$

• Hence $F_{ex} = Mg \tan \theta + mg \tan \theta = (m+M)g \tan \theta$

Example constant force, continued

What is the internal force that the blocks apply on each other and the reaction force by the ground on M?

From before:

•
$$F_i = \frac{mg}{\cos\theta}$$

$$\bullet R - F_i \cos \theta - Mg = 0$$

• Hence: $R = F_i \cos \theta + Mg = (m + M)g$

Example 2. Force proportional to velocity

Solve the equation of motion for the case $F = -\beta v$ ($\beta > 0$) with $x = x_0$ and $v = v_0$ at t = 0

<ロ> <部> <き> <き>

Example 3. Force proportional to position: simple harmonic oscillator

Solving the equation of motion for the case $F = m \frac{d^2 x}{dt^2} = -kx$

• $m\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$; trial solution $x = A\cos\omega t + B\sin\omega t$ $\rightarrow \dot{x} = -A\omega\sin\omega t + B\omega\cos\omega t$; $\ddot{x} = -A\omega^2\cos\omega t - B\omega^2\sin\omega t$ • $\ddot{x} = -\omega^2 x \rightarrow \omega^2 = \frac{k}{m}$ • Alternatively $x = x_0\cos(\omega t + \phi)$ (or $x = x_0Re[e^{i(\alpha t + \phi)}]$) • Expand : $x = x_0(\cos(\omega t)\cos\phi - \sin(\omega t)\sin\phi)$ $A = x_0\cos\phi$; $B = -x_0\sin\phi \rightarrow x_0^2 = A^2 + B^2$; $\tan\phi = -B/A$ • $x_0 = \text{amplitude}, \phi = \text{phase}, \omega = \text{angular frequency}$ ($T = \frac{2\pi}{\omega}$)

・ロト ・部ト ・ヨト ・ヨト 三臣

4.3 Energy conservation in one dimension Work done on a body by a force F

•
$$W = \int_{x_1}^{x_2} F(x) dx = m \int_{x_1}^{x_2} \frac{dv}{dt} dx$$

- We can write: $\frac{dv}{dt}dx = \frac{dx}{dt}dv = vdv$ hence $\int_{x_1}^{x_2} F(x)dx = m \int_{v_1}^{v_2} vdv = \frac{1}{2}m(v_2^2 - v_1^2) = T_2 - T_1$
- Now introduce an arbitrary reference point x₀

 $\int_{x_1}^{x_2} F dx = \int_{x_0}^{x_2} F dx - \int_{x_0}^{x_1} F dx \text{ defines a conservative force}$ hence $T_2 + [-\int_{x_0}^{x_2} F dx] = T_1 + [-\int_{x_0}^{x_1} F dx]$

▶ We define the *potential energy* U(x) at a point x :

 $U(x) - U(x_0) = -\int_{x_0}^x F dx$ and hence $T_2 + U_2 = T_1 + U_1$ (total energy PE + KE conserved)

► Note the minus sign. The potential energy (relative to a reference point) is always the *negative* of the work done by the force $\rightarrow F(x) = -\frac{dU}{dx}$